Research paper

The oral cavity as a biological barrier system: Design of an advanced buccal in vitro permeability model

Birgit J. Teubla, Markus Absengerb, Eleonore Fröhlichb, Gerd Leitingerb,c, Andreas Zimmera, Eva Robleggad,⇑

a Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
b Center for Medical Research, Medical University of Graz, Austria
c Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
d Research Center Pharmaceutical Engineering, Graz, Austria

Article info

Article history:
Available online 3 January 2013

Keywords:
Buccal mucosa
In vitro model
Animal mucin
TR 146 cells
Nanoparticles

Abstract

An important area for future research lies in finding a drug delivery system across or into the oral mucosa. However, to design such systems, simplified biological models are necessary so that the mechanisms and/or interactions of interest can readily be studied. The oral epithelium is covered by a complex mucus layer, which enables exchange of nutrients and provides lubrication. However, it has been demonstrated that mucus has an impact on the mobility of nanoparticles and drug molecules. Thus, we aimed to develop an advanced buccal in vitro model for studying transport of nanoparticles, taking the mucus layer into account. First, animal mucins (porcine gastric, bovine submaxillary) were compared with natural human mucin regarding chemical and morphological structure. Second, an "external" mucus layer was prepared by a film method and deposited onto an oral cell line (TR 146), cultured on transwells. Adherence of the mucin fibers was evaluated and the viability of the model was assessed. Nanoparticle transport studies were performed with this advanced in vitro model and an ex vivo diffusion system. The results revealed that porcine mucin is most similar to human natural mucin in chemical structure and morphology. Both the bovine and porcine mucin fibers adhered onto the oral cells: Due to the different morphology of bovine mucin, the viability of the oral cells decreased, whereas porcine mucin maintained the viability of the model for more than 48 h. Comparison of in vitro data with ex vivo data suggested reliability of the advanced buccal in vitro model. Additionally, it was demonstrated that the mucus layer in the oral cavity also acts as a strong barrier for the mobility of nanoparticles.

1. Introduction

The most commonly used route in drug delivery is oral administration with intestinal absorption. The majority of solid dosage forms is placed in the mouth and is expected to be swallowed. However, this has several significant disadvantages, including enzymatic degradation of the drug in the stomach and the intestine, as well as hepatic first pass metabolism. As such, other drug delivery sites are considered as an alternative route for the delivery of therapeutic agents [1]. Together with the nasal passage, pharynx, and urogenital region, the oral cavity is part of the oral mucosa and provides an interesting target site for local and systemic drug delivery [2]. Several intraoral dosage forms have been developed, including sublingual and rapid-melt tablets, (mucoadhesive) films, (lyophilized) wafers, patches, bioerodible disks, and microparticles [see e.g., [3–5]]. Generally, these dosage forms can be classified according to their dissolution and/or disintegration kinetics as quick-dissolving (QD), slow-dissolving (SD), or non-dissolving (ND) systems [6]. QD systems disintegrate within a few seconds to a minute upon contact with saliva without the need of water or chewing. They provide several benefits, including enhanced efficacy and convenient administration (especially for patients suffering from dysphagia) resulting in an improved patient compliance. SD systems also dissolve in the oral cavity within 1–10 min, whereas ND systems do not dissolve entirely and are therefore appropriate systems for controlled drug delivery. However, the extent of buccal drug absorption, including penetration/permeation, is determined by the physicochemical properties of a drug and is important for pharmacokinetics and hence the pharmacological action of the drug. New pharmaceutical formulations that apply nanoparticles (NPs) can improve drug delivery in the oral cavity. Yet their design is often impeded by a lack of understanding of
how they interact with biological tissues; thus, buccal in vitro permeability models are necessary.

The oral cavity is covered by a stratified squamous epithelium, which can be divided into two types [7]: keratinized and non-keratinized epithelium. Keratinized epithelium covers areas of dietary mucosa, such as the hard palate and gingiva. The surface is inflexible, rough, and resistant to abrasion. The non-keratinized epithelium covers areas of the lining mucosa, which is present on the lips, the buccal mucosa, alveolar mucosa, soft palate, the floor of the mouth, and underside the tongue. Compared with the keratinized epithelium, it is thicker and shows tolerance to compression and distention due to accommodate chewing, swallowing, and speech. Delivery of drug molecules into or across the buccal mucosa requires penetration into the superficial layers before a local or systemic effect can be obtained. The degree of permeability is least in the gingival mucosa, followed by the buccal mucosa. The most easily permeated area is the sublingual mucosa (i.e., floor of the mouth). Nevertheless, this region is permanently washed by saliva making drug delivery difficult [8]. The buccal mucosa, in contrast, represents a large surface area (23% of the total surface of the oral mucosa including the tongue) and is more fitted for systemic drug delivery [7,9,10]. Consequently, this study focuses on the buccal region of the oral cavity.

To study buccal mucosal permeability of drug loaded nano-carrier systems so far, three approaches have been used: (i) in vivo studies, (ii) ex vivo experiments, and (iii) in vitro systems. One of the simplest methodologies to study penetration/permeation in living human organisms is the buccal absorption test, also known as swirl and spit test [11]. However, there are some drawbacks. On the one hand, the accuracy of the experiments is limited by the sensitivity of the equipment to evaluate drug concentration, and on the other hand, information about the permeability/permeation into/through different areas of the oral cavity is not provided. Another method is the so-called “in vivo perfusion,” which is commonly used in pharmacokinetics [12]. Perfusion experiments are carried out with perfusion chambers attached onto various sites of the oral cavity. Drug solutions are circulated in the device and collected at different time points. One disadvantage here is that local drug metabolism can only be considered when intravenous infusion experiments are performed too. Frequently, animal models are preferred systems, although they often show different results when applied to humans [13].

The most commonly used ex vivo methods are carried out with static and dynamic permeability chambers. A variety of tissues from sacrificed animals can be used for oral mucosal permeability studies. Due to morphological similarities, buccal mucosa of the pig has been considered as an appropriate model of human buccal mucosa for drug permeability studies [14,15]. However, one important aspect of these systems is to maintain the activity of the protective barriers that prevent the movement of xenobiotics in the buccal mucosa. These barrier systems depend on the tissue homeostasis (and in series on the ATP content), the tissue integrity, of an "external" mucus layer, which was prepared by a film method. The layer was deposited onto the cells, and adherence of the mucin fibers onto the cells was evaluated. Furthermore, the viability of the model was investigated and the transport of polymeric nanoparticles was studied and compared with ex vivo experiments to ensure reliability of the in vitro model.

2. Materials and methods

2.1. Human versus animal mucins

Lyophilized mucin from porcine stomach and mucin from bovine submaxillary glands were obtained from Sigma–Aldrich (Munich, Germany). Human saliva was collected from 10 male and female healthy donors (Austrians, aged between 25 and 45 years, non-smoker) as previously described by Park et al. [36] and centri-
fuged for 1 h at 425g (Eppendorf Centrifuge 5415 R). The supernatant fluid was immersed into liquid nitrogen (−196 °C) for 15 min and transferred into a freeze dryer (LOYVAC GT 2). After vacuum was applied, the mucin was dried for 48 h at ambient temperature. To evaluate if animal mucins show chemical and morphological similarities to human mucin, scanning electron microscopy (Zeiss DSM 950) and Fourier transform infrared spectroscopy (FTIR) were performed. FTIR was conducted using a Bruker VERTEX 70 instrument, equipped with a DLATGS-detector, in the 2000–600 cm⁻¹ region. Thereby, a close contact of the samples with the diamond ATR crystal was ensured. The spectroscopy measurements were an average of 16 scans, where the baseline was corrected. Viscosity measurements were conducted with a Physica MCR 301 rotational rheometer (Anton Paar) using cone-plate geometry (CP 50-1). The shear rates ranged between 100 s⁻¹ and 300 s⁻¹. All tests were performed with 570 μl sample volume of mucin dispersion (100 mg/ml) at room temperature threefold.

2.2. Preparation of the external mucus layer

Mucin was dispersed in distilled water (100 mg/ml) and sonicated for 10 min at room temperature. To increase the flexibility and avoid brittleness of the layer, glycerol (1–10%) was added as a plasticizer in different concentrations. Prior to use, the mucin dispersion was sterilized by autoclaving (Astell Scientific). To prevent bacterial contamination, all preparation steps were carried out under aseptic conditions. A 800 μl sample volume of the mixture was filled into a plastic ring (a bottomless transwell™), which was fixed on a foil (area 1.131 cm²), and dried for 10 days at 4 °C, 37 °C, room temperature, and laminar flow air, respectively. The dried mucus layers were then gently removed from the ring and the foil with a microtome blade. The layers were stored under aseptic conditions.

2.3. Scanning electron microscopy (SEM)

To evaluate the network structure and the mesh size of the mucin layers and the human mucin, the samples were re-suspended in 500 μl Milli-Q water onto poly-l-lysine coated cover glasses. Fixation was carried out in Schaeffers fixative (37% formol/100% ethanol) for 2 h to maintain the native mucin structure [37]. Subsequently, dehydration was carried out through a graded series of ethanol (80–100%). This was followed by critical point drying (Bal-Tec CPD O30) and gold palladium sputtering (Bal-Tec SCD 500). The samples were coated at 25 mA for 60 s under argon atmosphere and examined in a scanning electron microscope (Zeiss DSM 950).

2.4. Cell culture

The TR146 cells, which were obtained from Imperial Cancer Research Technology (London, UK), were grown in DMEM with supplements of 10% FBS, 200 μM l-Glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin. The H376 cell line from Sigma-Aldrich (Vienna, Austria) was grown in DMEM/HAMS F12 (Nutrient mixture F 12) [1:1], supplemented with 10% FBS, 200 μM l-Glutamine, and 0.5 μg/ml sodium hydrocortisone succinate. Briefly, culture conditions were maintained at 37 °C in 98% humidity of 5% CO₂/95% air. Sub-cultivation was performed at approximately 70% confluence with 0.25% trypsin–EDTA. Prior to use, cells were cultured on 1.131 cm² permeable Corning Costar™ 12 well inserts (polycarbonate filters; Szabo Scandic, Vienna, Austria) with a pore size of 3.0 μm. The seeding density was 2.4 × 10⁶ cells/cm², and the incubation time was 30 days. The transepithelial electrical resistance (TEER) was measured with an Endohm culture cup connected to an EVOM voltohmmeter (World Precision Instruments). Cell morphology was investigated via SEM.

2.5. Mucus adherent effects

The external mucus layer was deposited onto the confluent TR146 cell layer (28 days in culture) and incubated for 24 h at 37 °C. The visualization of the mucus adherent effects onto the cell surface was conducted by using SEM and laser scanning microscopy (LSM). The samples were washed twice with 500 μl Hank's Buffered Salt Solution (HBSS), fixed with Schaeffer's fixative, and dehydrated in an ethanol series (80–100%). After critical point drying and gold palladium sputtering, the samples were analyzed in a scanning electron microscope. Acridine Orange (Sigma–Aldrich) was used for fluorescent labeling of the cells and the mucoglycoproteins. The cell medium was replaced with HBSS/Acridine Orange (2 mg/ml) and incubated for 10 min at 37 °C. Subsequently, the cells were washed twice with 0.5 ml HBSS. The membrane was removed with a scalpel blade from the transwell™ insert and mounted on a slide. Images were monitored with a fluorescence microscope (Axio Observer, Zeiss; camera: Axio Cam) at 546/12 nm excitation wave length using a BP 575–640 nm band pass detection for the red channel and 470/40 nm excitation wave length in conjunction with BP 525/50 for the green channel.

2.6. Formazan bioreduction

In order to examine the viability of the advanced model, a Cell-iter 96™ Aqueous Non-Radioactive Cell Proliferation Assay (Promega) was used according to the manufacturer's instructions. 2 × 10⁴ cells/200 μl medium were seeded in a 96 well plate and cultured for 24 h. Subsequently, the medium was replaced with aliquot parts of the mucus layer/serum-free medium (n = 6) and incubated for 4, 24, and 48 h. 20 μl of a MTS/PMS solution per well was added and re-suspended. After an incubation time of 4 h, the absorbance was measured at 490 nm with a VIS-plate reader (FLUO-Ostar Optima, BMG, Labortechnik).

2.7. In vitro nanoparticle transport studies

Red (580/605) fluorescence-labeled carboxyl polystyrene (CP) particles of 200 nm and red (580/605) fluorescence-labeled amine modified polystyrene (AP) particles (FluoSpheres™) were purchased from Invitrogen (Darmstadt, Germany). Red fluorescence-labeled (542/612) plain polystyrene (PP) particles of 200 nm were purchased from Fisher Scientific (Vienna, Austria). The transport studies were performed with the advanced in vitro model at 37 °C. 0.5 ml of a polystyrene particle/phosphate buffered saline (PBS) dispersion was applied to the apical side in a concentration of 100 μg/ml. The cell nuclei were stained with 1 μg/ml Hoechst 33342 (Invitrogen). To determine the particle transport after 4 h, the filters were washed twice with 0.5 ml PBS and the removed membrane was mounted on a slide. Images were acquired with an LSM510 Meta confocal laser scanning microscope (Zeiss) with 405 nm/420–480 nm for the blue channel and 543 nm/LP 560 nm for the red channel. Afterward, z-stacks were acquired and virtual radial sections were documented.

2.8. Ex vivo nanoparticle transport studies

The transport of the nanoparticles through porcine buccal mucosa was investigated using static Franz diffusion cells (PermeGear, Hellertown, USA). The receiver compartment was filled with 7.8 ml PBS buffer at 37 °C. The excised buccal mucosa (Karnerta Slaughter House, Graz, Austria) was mounted between the donor and receptor compartments and pre-equilibrated with 1 ml PBS buffer.
Subsequently, the buffer was replaced with 200 nm CP, AP, and PP particles dispersed in PBS in a concentration of 100 μg/ml. After 4-h incubation time, the mucosa was washed three times with PBS and fixed in 4% formalin. The samples were shock-frozen in Neg-50 Kryo-Media and cut into 10 μm slices with a cryo-microtome (Microm HM560). The samples were investigated using fluorescence microscopy (Olympus BX-51, camera: DP-71). Images were acquired with excitation BP 520–550 nm and emission LP 580 nm for red fluorescence.

3. Results and discussion

3.1. Characterization of animal and human mucins

The mucin family comprises 20 members, which are divided into two groups: the secreted soluble mucins (SSMs) and the membrane-associated mucins (MAMs) [38,39]. The expression as well as the functions of MAM in the oral cavity is less well understood. They include MUC1, MUC4, and MUC16, which are produced in the submandibular, the sublingual, and the parotid glands [42]. Their roles on the mucus network formation are not well known. However, the development of a physiological buccal permeability in vitro model requires an understanding of the structure of this protective mucus gel, which covers the epithelial cells. To evaluate which materials mimic the structural and morphological properties of natural human mucin, various saliva substitutes administered to xerostomic patients (saliva production is diminished) were investigated [43,44]. Previous studies have reported that (animal) mucin based substitutes are more effective than carboxymethyl-cellulose based saliva substitutes [45]. In this study, animal mucins, including porcine gastric and bovine submaxillary, were evaluated regarding their chemical and morphological similarities to natural human mucin. The chemical properties were measured with FTIR, which provides information about the secondary structure contents of proteins (mucins). A high similarity between the absorption spectra of bovine submaxillary, porcine gastric, and human salivary mucin was seen (Fig. 1). The appearance of the Amide I and Amide II bands, which are the characteristic sets of absorption bands (i.e., 1647 cm⁻¹ and 1541 cm⁻¹) for proteins [46], was essentially identical in all tested mucins. Since the Amide I frequency is associated with the protein structure, our data led to the assumption that the mucins exhibited an unordered secondary structure (frequency range between 1640 and 1648 cm⁻¹), which could include turns, random coils, and extended secondary structure elements [47].

Apart from the chemical structure, the morphological structure of the mucin fibers was studied by SEM (Fig. 2). Pig gastric mucin (Fig. 2a) showed a high similarity to human mucin (Fig. 2c). However, bovine submaxillary mucin (Fig. 2b) formed thicker fibers that agglomerated. These data are supported by findings of Bettelheim and Dey [48]. They observed that at low ionic strength, bovine submaxillary mucin is a rigid rod. With increasing ionic strength, the molecule becomes a stiff and compact coil. Moreover, porcine gastric mucin comprises MUC5AC and MUC6, two gel forming mucins [49], and MUC1 and MUC16, two cell surface mucins. Compared with the oral cavity, MUC5AC shows high similarities to the salivary mucin MUC5B [50], and MUC1 and MUC16 are also available in the oral cavity [51]. These findings suggest that human mucin can be modeled by porcine gastric mucin.

3.2. Preparation and characterization of the external mucus layer

In the oral cavity, the mucus layer is formed by mucins of the salivary instead of mucus-secreting cells. To simulate the physiology of the buccal mucosa, an external mucus layer was prepared by a film method. A concentration of 100 mg/ml mucin was necessary to obtain a layer with a thickness of about 120–150 μm. Adding 2% glycerol to the aqueous mucus dispersion resulted in a mechanically stable layer (independent on the mucin-type). A glycerol content less than 2% led to an increased brittleness and shrinkage of the layer. The investigations of the different drying conditions revealed that a temperature of 4 °C was necessary to obtain mechanical stability, while drying at 37 °C and room temperature desiccated the layer excessively. Furthermore, the rheological properties of the mucin dispersions were evaluated. The viscosity of human mucin was inversely proportional to the shear rate, which indicated a non-Newtonian trait of biological fluid. The fluid behavior of the animal mucins was also dependent on the shear rate. Concerning the viscosity values at shear rates that would exist during swallowing or speech (i.e., 60–160 s⁻¹) [52], the porcine gastric mucin had a viscosity of 465 ± 26 mPa s at shear rates of 100 s⁻¹, whereas the viscosity of bovine submaxillary mucin layer was 132 ± 15 mPa s at the same shear rate. Human mucin exhibited a viscosity of 25 ± 1.2 mPa s, which was much lower than for animal mucin. These variations in viscosity could be attributed to the different mucin types and hence the different degree of glycosidic-bonds [53]. Highly glycosylated MAMs are able to bind a higher amount of water than un-glycosylated random coils, which implies a higher viscosity [54]. Since the investigated salivary mucin is extracted out of saliva, it comprises a high amount of secreted mucins (i.e., MUC 7), displaying a minor role in viscoelastic properties. Likewise, small differences in the concentrations of these mucins may be sufficient to cause changes in the viscoelastic behavior. However, Park et al. [36] observed only a marginal variation between the viscosity behaviors of different animal mucins compared to human mucin. These differences can be attributed to the low mucin concentrations used in their study.

The network formation properties were evaluated by SEM (Fig. 3). All tested mucins formed a 3-dimensional network. Comparing the human salivary (Fig. 3c) with the porcine gastric (Fig. 3a) mucus layer, the gel structure was similar, resulting in a network with parallel and crossing mucin fibers. The mucus mesh size could be determined with pore sizes up to 0.9 μm in diameter for the porcine gastric layer and 0.8 μm for the human mucin. In contrast, the bovine submaxillary layer (Fig. 3b) formed a network with a smaller mesh size (pores up to 0.4 μm). However, previous studies demonstrated that spherical viruses penetrated different mucus barriers and efficiently infiltrated mucosal tissues. The Norwalk (size 38 nm) and human papilloma (size 55 nm) viruses freely
diffused through human cervical mucus barriers, suggesting a length scale up to 55 nm [55]. Additional findings showed that 180 nm viruses were also able to diffuse through the network. Recently, Lai et al. [56] demonstrated that polymeric nanoparticles with a size between 200 and 500 nm are also capable to traverse human cervical mucus. In the oral cavity, to our knowledge, the exact mucus mesh has not been evaluated so far. This is impeded by a lack of understanding of how (and partially which) mucins adhere onto the epithelial cells and form the oral glycocalyx. Thus, more investigations are necessary in future research.

3.3. Evaluation of the oral cell line

Two oral epithelial cell lines, TR 146 [21,23,24] and H 376 [57], were evaluated for confluence and integrity by measuring the Transepithelial Electrical Resistance (TEER). As shown in Fig. 4, the H 376 cell line reached the highest effective TEER value on day 18 with $31.40 \pm 4.28 \Omega \cdot \text{cm}^2$. Subsequently, the integrity continuously decreased. Since the required tightness for transport was not reached, the H 376 cells were considered unsuitable for this study. The TR 146 cells reached the highest TEER values between day 27 and 28 with $50.02 \pm 2.87 \Omega \cdot \text{cm}^2$. Thereafter, a plateau was reached. Thus, this cell line was used for our experiments. The TR 146 cells were of human buccal epithelial origin and had a stratified epithelium with about 4 cell layers after 27 days in culture (see Fig. 5a and d). To evaluate if the high integrity was governed by tight junctions, the zonula occludens were highlighted with a fluorescence marker (data not shown). The data demonstrated that tight junctions were rare in this cell line, which is in agreement with the literature [21].

3.4. Development of the advanced in vitro model

Once the integrity of this cell line was maintained, the external mucus layers were deposited onto the confluent cell layers. The mucus adherent effects onto the cell surface were visualized by two different methods, that is, fluorescence microscopy and electron microscopy. For the fluorescent visualization of the mucin fibers, a suitable staining method was required. For a simple staining process, Acridine Orange (AO) was used as dye, taking the chemical properties of mucoglycoproteins into account. Since the mucus layer shows acidic properties, AO (pH sensitive) accumulated in
the mucin fibers, inducing a shift from green emission to red emission (Fig. 5). The results displayed a detectable red fluorescence of the porcine (Fig. 5b) and bovine (Fig. 5c) mucus layer on the cell surface. In contrast, untreated cells exhibited only a green fluorescence (Fig. 5a). On the one hand, this suggests that viable cells can be distinguished from the mucus layer due to a green emission. On the other hand, adherent mucin fibers are detectable on the epithelial cells independent on the type of the external mucus layers (i.e., porcine gastric and bovine submaxillary mucus layer). To confirm these results, SEM images of TR 146 cells, incubated with the mucus layer, were provided. While no adherent mucoglycoproteins were detectable on the epithelial surface of the TR 146 cells (Fig. 5d), adherent porcine gastric (Fig. 5e) and bovine submaxillary (Fig. 5f) mucin fibers were clearly visible after incubation with the external layer. Hence, the adherent effects of the mucus layer could be verified by LSM and SEM. The mechanism behind the surface-adherence of the mucins could be attributed to the specific surface structure of the oral epithelium. Kullaa–Mikkonen [58] demonstrated that surfaces of superficial cells are comprised of ridge-like folds, so-called microplicae, which are also present in the cornea. There they maximize the absorbance of oxygen and nutrients and hold mucus on the cell surface [59]. Oral epithelial surfaces show strong affinity for mucins due to mucin binding proteins [60]. Recently, it was hypothesized by Asikainen et al. that both mechanisms are involved in the formation of an intact oral mucosal barrier complex [61].

To determine the viability of the advanced buccal in vitro model, the mitochondrial activity of TR 146 cells after incubation with the mucus layer was assessed. Toxic effects of the bovine mucus layer onto the cells could already be detected after 4 h. The viability decreased (dependent on time) to 71.5 ± 3.3% (Fig. 6). After 48-h incubation, a pronounced cytotoxic effect was determined with viability values less than 20%. This behavior can be explained by the morphological structure of bovine submaxillary mucin and the network formation of the layer. Once the layer is deposited on the cells and incubated with cell culture medium, the ionic strength increases and the mucin fibers become (time-dependent) stiff, compact coils. The stiffness is maintained due to repulsive electric forces of sialic side chains [48], showing an increasing integrity of the mucus layer (Fig. 3b). Due to the compact system, the cells could not be sufficiently supplied with the cell culture medium resulting in a decreased viability. In contrast, the mucus layer from porcine stomach displayed a mesh size up to 0.8 μm and showed no significant impact on the mitochondrial activity within the tested time (P > 0.05). Thus, cells were adequately supplied and nearly 100% viability was maintained after 48 h. Based on these results, it can be concluded that the porcine gastric mucus layer did not affect the viability of the epithelial cells, and therefore, this layer was considered suitable for the advanced in vitro model.

3.5. Transport studies with polystyrene nanoparticles

One of the major advantages of in vitro research is that compared to animal models, cellular and sub-cellular functions can be studied easier in a simplified, biological model system. Nanoparticles are considered as new pharmaceutical formulations that can improve drug delivery. Yet, their design is impeded by a lack of understanding of how nanoparticles interact with the buccal mucosa. Recent studies demonstrated that the permeation/permeation of nanoparticles through/into the mucus layer and the epithelium was determined by the surface charge, the particle size, and the hydrophilicity [17]. Thus, an in vitro model that will be used for the evaluation of the penetration/permeation behavior of nanoparticles has to be standardized according to these aspects.
Fig. 7. Transport studies with the advanced buccal in vitro model in comparison with ex vivo experiments. The nuclei were stained with Hoechst (blue). (a) 200 nm CP particles (red) aggregated in the mucus layer of the in vitro model, (b) 200 nm AP particles (red), and (c) 200 nm PP particles (red) permeated the mucus layer and penetrated into the epithelium (scale bar = 10 μm). Radial sections of the oral mucosa to determine the localization of (d) 200 nm CP, (e) 200 nm AP, and (f) 200 nm PP particles within the advance model (scale bar = 200 μm). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Therefore, in vitro and ex vivo transport studies were performed with hydrophilic 200 nm sized model particles of different charges (Fig. 7). The in vitro transport of negatively charged 200 nm CP particles (Fig. 7a) was hindered by the negatively charged mucin fibers and the particles aggregated within the network. Thus, CP 200 nm failed to penetrate into the epithelium. In contrast, positive 200 nm AP (Fig. 7b) and neutral 200 nm PP particles (Fig. 7c) were able to permeate the mucus layer and penetrate into the oral epithelium. The results from the ex vivo experiments confirmed the in vitro data. A total of 200 nm CP particles (Fig. 7d) were entrapped in the mucus layer. However, positive 200 nm (Fig. 7e) and neutral 200 nm particles (Fig. 7f) penetrated into deeper regions of the tissue. These results strongly suggest that in the buccal mucosa, the mucus layer together with the epithelium acts as a strong barrier for the uptake of nanoparticles. On the other hand, the results of the advanced in vitro model correlated well with the data from the ex vivo experiments, indicating a high reliability of the model.

4. Conclusions

In the current study, an advanced buccal in vitro model including oral epithelial TR 146 cells and an adherent mucus layer is developed. Our findings demonstrate that animal mucins, including porcine gastric and bovine submaxillary, reveal no chemical differences (relevant for the model) to human natural mucin. The mucus layers are prepared by a film method and adhere onto the epithelial TR 146 cells. Porcine gastric mucin maintains the viability of the system for more than 48 h. Nanoparticle transport studies correlate well with data from ex vivo permeability studies through porcine buccal mucosa indicating that our model is reliable. Additionally, the results strongly suggest that in the buccal mucosa, the mucus layer together with the epithelium acts as a strong barrier for the uptake of nanoparticles. The advanced buccal in vitro model is useful to study mucosal uptake and penetration of nanoparticles in the oral cavity.

Acknowledgments

This project was funded by EFRE A3-11-N-14/2010-5. The authors thank Christoph Neubauer of the Research Center Pharmaceutical Engineering Graz, Austria, for his assistance with FTIR and Claudia Meindl of the Medical University of Graz, Austria, for her assistance with fluorescence microscopy. Gertrud Havlicek and Rudolf Schmied, Medical University of Graz, are thanked for their assistance with SEM.

References
