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Abstract
Enhancing transdermal delivery of insulin using chemical penetration enhancers (CPEs) has several
advantages over other non-traditional methods; however, lack of suitable predictive models, make
experimentation the only alternative for discovering new CPEs. To address this limitation, a
quantitative structure-property relationship (QSPR) model was developed, for predicting insulin
permeation in the presence of CPEs. A virtual design algorithm that incorporates QSPR models for
predicting CPE properties was used to identify 48 potential CPEs. Permeation experiments using
Franz diffusion cells and resistance experiments were performed to quantify the effect of CPEs on
insulin permeability and skin structure, respectively. Of the 48 CPEs, 35 were used for training and
13 were used for validation. In addition, 12 CPEs reported in literature were also included in the
validation set. Differential evolution (DE) was coupled with artificial neural networks (ANNs) to
develop the non-linear QSPR models. The six-descriptor model had a 16% absolute average deviation
(%AAD) in the training set and 4 misclassifications in the validation set. Five of the six descriptors
were found to be statistically significant after sensitivity analyses. The results suggest, molecules
with low dipoles that are capable of forming intermolecular bonds with skin lipid bi-layers show
promise as effective insulin-specific CPEs.

1. Introduction
Non-traditional methods of insulin delivery like insulin pumps, insulin inhalers and insulin
pens have obvious advantages over traditional methods of delivery (Patni et al., 2006). Another
promising non-traditional alternative is the delivery of insulin through skin. However, human
skin provides a very efficient transport barrier (Monteiro-Riviere, 1991, Monteiro-Riviere,
1996) to delivery of protein molecules like insulin, due to their large size (> 3000 Daltons) and
weakly hydrophobic nature. Several physical and chemical methods have been developed to
improve the permeation of insulin through human skin (Scheuplein and Blank, 1973, Pillai and
Panchagnula, 2003a, Rastogi and Singh, 2003, Pillai et al., 2004b). Currently, the most efficient
method in enhancing insulin permeation through skin is iontophoresis (Pillai and Panchagnula,
2003a). However, the economic viability and ease of applicability of chemical approaches,
such as the use of chemical penetration enhancers (CPEs), makes them an attractive alternative.

Despite the advantages, very few studies involving the use of CPEs for transdermal insulin
delivery exist in the literature (Rastogi and Singh, 2003, Pillai et al., 2004b). Further, in these
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limited studies, CPEs involving either fatty acids or fatty alcohols are employed in tandem
with iontophoresis. However, when compared to the physical methods of enhancement like
iontophoresis, these ‘traditional’ CPEs have not been effective in enhancing the permeation of
large hydrophilic molecules like insulin. Therefore, a need exists to develop new CPEs that
can increase the dermal absorption of insulin to therapeutic levels.

The most rigorous means of identifying new CPEs is by estimating experimentally the drug
permeability in presence of the CPE; however, practical limitations on time and resources make
this method unattractive. Therefore, the scientific community is relying increasingly upon
predictive models for estimating the drug permeabilities in the presence of CPEs. Although
mechanistic models have been employed in the past to estimate drug permeabilities through
skin (Scheuplein and Blank, 1971, Scheuplein and Blank, 1973, Stoughton, 1989), they involve
many assumptions, and parameters that cannot be measured easily. In addition, these models
do not allow for uncertainties in the experimental data, and as a result, lead to large predictive
errors. Semi-empirical modeling approaches like quantitative structure-property relationships
(QSPRs) can account for data uncertainties (by employing weighted regression or similar
methods) and usually lead to better predictive models. Also, QSPRs are used to model
molecular properties based on structural features, which can provide physical insight to the
modeled phenomenon.

Most of the available skin permeation QSPR models (Potts and Guy, 1992, Guy and Potts,
1993, Barratt, 1995) in the literature are developed for predicting the passive permeability of
chemicals, i.e., the unaided transport of molecules through the skin. However, the permeation
of a therapeutic drug in the presence of other chemicals can differ markedly from passive
permeation, and in CPE enhanced transdermal drug delivery, the most important property of
interest for modeling purposes is the permeability of the drug in the presence of CPEs. Despite
the importance of such models, molecular modeling and QSPR studies in the past did not focus
on this subject, possibly due to the variations in the structure-activity relationships between
different pairs of drugs and enhancers (Iyer et al., 2007). A few recent studies (Li et al.,
2003, Ghafourian et al., 2004, Iyer et al., 2007); however, have attempted to model the
permeation of different types of drugs in the presence of CPEs.

Like other empirical methods, QSPR models are based on the availability and quality of the
data used for model development. A review of the available literature for the pertinent data
indicates that insulin has been predominantly delivered through the skin using physical
methods like iontophoresis (Rao and Misra, 1994, Pillai et al., 2003a, Pillai et al., 2003b, Pillai
and Panchagnula, 2003a, Pillai and Panchagnula, 2003b, Pillai et al., 2004a, Pillai et al.,
2004b) and sonophoresis (Mitragotri et al., 1996), with very few reported studies on the use
of CPEs. Pillai et al. and Choi et al. (Choi et al., 1999, Pillai and Panchagnula, 2003a, Pillai
and Panchagnula, 2003b, Pillai et al., 2004b) have studied the effect of solvents like ethanol,
propylene glycol, ethyl acetate and isopropyl myristate on insulin permeation. However, these
solvents were used for pre-treatment of the skin before insulin application. A similar study on
the effect of CPE pre-treatment on insulin permeation was completed by Choi et al. (Choi et
al., 1999). Some common enhancers like Azone, oleic acid and poloxamer have been
investigated by Hao et al. (Hao et al., 1995), but these enhancers have been used only after
treating the skin with iontophoresis. Priborsky et al. (Priborsky et al., 1988) studied the effects
of CPEs without using any physical methods, but the number of CPEs investigated was limited
to three. Similar studies on a handful of CPEs have been carried out by others (Rastogi and
Singh, 2003, Sintov and Wormser, 2007). This literature review suggests that there is a serious
shortage of insulin permeability data in the presence of different CPE classes. In the current
work, experiments based on well-established literature procedures were carried out to insure
sufficient data exist for modeling analysis. The detailed experimental procedures can be found
elsewhere (Yerramsetty et al., 2009).
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A total of 48 CPEs with different functional groups were investigated experimentally in the
current work, for their effect on insulin permeation. These 48 CPEs were identified with our
virtual design algorithm, which combines genetic algorithms (GAs) and quantitative structure-
property relationship (QSPR) models for important CPE properties. Details concerning the
algorithms and models can be found elsewhere (Godavarthy et al., 2009).

Most literature QSPR models for skin permeation are based on a few, select descriptors that
have been established by many researchers in the field. As a result, the number of important
descriptors in the field of transdermal delivery is low when compared to other studies, such as
drug delivery across the blood-brain barrier (Neumann et al., 2006). Through this work, we
attempt to identify additional descriptors that could be important for transdermal delivery.
However descriptor pruning is a complex task when developing non-linear QSPR models.
Even after removing the highly correlated descriptors, most QSPR data sets retain large
numbers of descriptors. Many of these descriptors are redundant or insignificant, and the sheer
number can cause difficulties in providing a mechanistic interpretation of the property of
interest. Many methods exist for pruning large descriptors sets to smaller sets more amenable
to development of practical and useful models. Sensitivity analysis (Turner et al., 2004) is a
commonly used technique, in which the sensitivity of the output to random changes in the
descriptor values is analyzed. This technique although simple, does not account for descriptor
interrelationships. For example, a group of two or more descriptors can provide a significant
effect while the same descriptors examined singly are insignificant. Multi-linear regression
techniques are also employed commonly (Kang et al., 2007); these techniques are better than
sensitivity analysis in their ability to account for the linear relationships between a group of
descriptors and the output, but they fail to account for non-linear relationships. Attempts have
been made to include genetic algorithms (GA) to search for the best descriptors without
imposing any constraints on the types (linear or non-linear) of input-output relationships
between the descriptors and the property of interest. However, these algorithms are limited to
only a small number of initial descriptors (Agatonovic-Kustrin et al., 2001). In the current
work, an evolutionary algorithm called differential evolution (DE) was used for descriptor
pruning. This is a two-level algorithm; at the top level, a DE framework searches for the set of
best descriptors and at the bottom level neural networks are used to build non-linear models
based on the selected descriptors. In addition to the best descriptors, the DE framework has
been modified to simultaneously search for the best neural network architecture.

2. Methods
2.1. Experimental Methodology

A brief description of the experimental procedure is provided here. For a detailed description,
the readers are referred to Yerramsetty et al. (Yerramsetty et al., 2009) and Rachakonda et al.
(Rachakonda et al., 2008).

Resistance measurements—Porcine abdominal skin was placed between the receiver and
donor plates of a resistance chamber built in-house, with the stratum corneum facing the donor
wells, and the two plates were clamped together tightly. The receiver chambers were filled
completely with phosphate buffered saline (PBS, pH – 7.4, phosphate and sodium chloride
concentrations of 0.001M and 0.137M, respectively). The resistance of the skin was measured
using a common electrode placed beneath the receiver plate and the other placed sequentially
into each donor well. All CPEs were tested at a concentration of 5% (wt/v) in 40:60 PBS and
ethanol solution with the receiver chambers maintained at 37±1°C. Resistance measurements
were taken hourly for a period as long as six hours.

The resistance reduction factor (RF) was calculated as the ratio of the initial resistance (R) of
the skin at time 0 to the resistance at time t, as given by:
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(1)

Permeability measurements—All permeation experiments were carried out using Franz
diffusion cells (Permegear Inc., Riegelsville, PA, USA). Porcine abdominal skin was placed
between the receiver and donor chambers of the Franz cells. Full thickness porcine skin as the
model membrane for insulin permeation has not appeared in the literature; however, Rastogi
and Singh (Rastogi and Singh, 2005) have studied the effect of some fatty acids on the
permeation of Lispro through porcine epidermis with determined Kp values for the control and
oleic acid of 0.0002 and 0.0025, respectively. These values are of the same magnitude as those
Kp values calculated in this work, which are 0.0007 and 0.0038 for the control and oleic acid,
respectively. Since the majority of the resistance to the permeation of hydrophilic drugs lies
in the stratum corneum layer of the skin, we believe that employing full thickness skin for
permeation studies should lead to no disadvantages when compared to studies using just the
epidermis.

Then, 1.0 mL solutions of 40:60 Lispro (an insulin analog) and ethanol (containing
approximately 40 IU of Lispro), and 5% w/v CPE were placed in the donor chambers. Samples
of 0.2 mL were withdrawn from the receiver chamber at different time intervals (3, 9, 12, 18,
24, 36 & 48 h), and insulin concentration was analyzed by high-performance liquid
chromatography (HPLC). The following steady-state equation was used to calculate
permeability of the skin:

(2)

where, Am is the exposure area of the skin sample (0.64 cm2), C0 is the initial concentration in
the donor chamber in mM, P is the permeability of the membrane and t is time in hours. The
permeability is given in terms of the diffusion coefficient (Dm), the partition coefficient (Km),
and the thickness of the skin sample (L):

(3)

In this study, the amount of drug permeated was calculated as the total amount of drug
permeated through skin during the time period of 48 h and the amounts sampled from the
receiver chamber during this period.

2.2. QSPR Methodology
The development of a QSPR model involves the following series of steps: (a) data set
generation, (b) descriptor calculation, (c) descriptor reduction, (d) model training and (e) model
validation.

Data set generation—Insulin permeability data in the presence of 48 CPEs were generated
using the experimental procedure discussed in Section 2.1. A data set containing 35 CPEs was
used for training the model. The experimental permeability (Kp) values in this data set range
from 0.5 cm/h to 7.6 cm/h. Another data set of 25 CPEs was used for validation. This included
12 CPEs that were reported in the literature to be insulin enhancers; eight CPEs that did not
significantly reduce the skin resistance when tested in our lab using the resistance procedure
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described previously in Section 2.1 (permeability values for these CPEs were not measured
and therefore are not reported); and five CPEs that were tested in our lab for permeability and
were not included in the training set.

Descriptor calculation—Descriptor calculation requires a series of steps common to all
QSPR models. ChemBioDraw Ultra 11.0 (CambridgeSoft, 2008) was used to generate the two
dimensional (2-D) structures for the CPEs in the data set. These 2-D structures were then used
to generate three dimensional (3-D) structures. The molecular energy was minimized using
Chem3D Pro 11.0 (CambridgeSoft, 2008) to find the corresponding optimal 3-D conformation.
The 3-D structures were further optimized using AMPAC 6.0 (Semichem, 1998a), and the final
optimized structures were provided to CODESSA PRO (Semichem, 1998b) for descriptor
calculation. CODESSA PRO has the capability to generate over 1200 descriptors. However,
due to structural complexity, this number may be lower, and a missing descriptor was assigned
a zero.

Descriptor reduction and model training—A non-linear reduction and training strategy
was employed in the current work to discover simultaneously the best descriptor set and the
best neural network architecture based on these descriptors. An evolutionary algorithm,
differential evolution (DE), was used to search for the best descriptors and network
architecture, and artificial neural networks (ANNs) were used to build the non-linear models
based on these descriptors. Briefly, DE is a stochastic optimization algorithm that finds the
global extremes (minimum or maximum) of a function. The method begins with an initial
random population of individuals (or independent variables), and through mutation and
crossover operations over a number of generations, transforms this initial population into a
population that is, on average, much closer to the global minimum (or maximum) of the
dependent variable. For a detailed overview of this process, see the description provided by
Price et al. (Price et al., 2005). Two essential features of any evolutionary algorithm are (a)
genetic representation and (b) the objective function, which are described below.

a. Genetic representation: A good genetic representation of the solution domain is an
important step in developing an efficient DE algorithm. In the current work, the
solution space is comprised of all possible molecular descriptors and all possible two
hidden-layered neural network architectures. Since a two hidden-layer network is
capable of reasonable approximation of any non-linear function, the maximum
number of hidden layers was limited to two (Hornik et al., 1989). Guidelines exist in
the literature for choosing the maximum number of descriptors for small data sets,
and these were applied during QSPR model development (Tropsha et al., 2003). These
guidelines limit the maximum number of descriptors in the model to 1/5th the number
of data points in the training set. Since 35 training points were available, the number
of descriptors used in the modeling effort was limited to six. Therefore, six descriptors
form an individual in the solution space and each individual in the population is
characterized by this set of six descriptors. As in most evolutionary algorithms, arrays
are the most suitable form of representing an individual in the solution space. In the
present work, a nine-element integer array, Di, was used to represent the ith individual
in the initial population. Each of the first six elements of the array stores an integer
that represents a descriptor from the set of all possible descriptors. Therefore, Di,j for
j = 1 to 6 represents the jth element (or descriptor) of the ith individual in the initial
population. Di, Mi, and Ti, are used to distinguish between the individuals in the initial
population, mutated population and the trial population, respectively. In addition to
the descriptors, the algorithm also optimizes the network architecture. Therefore, the
genetic representation includes elements that denote the number of hidden layers (1
or 2) and also the number of neurons in each of these hidden layers. Employing an
analogous representation scheme as used for the descriptors, the seventh element in
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the arrays Di, Mi, and Ti, was used to represent the number of hidden layers in the
network. If this element was set to a value of one, then the corresponding network
had a single hidden-layer, and if the value of the element was zero, then the network
contained two hidden-layers. Further, the last two elements of the arrays were used
to represent the number of neurons in the one or two hidden-layer architectures,
respectively. The maximum number of neurons in either hidden layer was set at 25
(denoted as max_neurons in the subsequent discussion).

b. The objective function: Another major aspect of a DE algorithm is choice of a suitable
objective function. In this work, the percent average absolute deviation (%AAD)
between the experimental and the predicted Kp values was chosen as the objective
function. The algorithm searches for the set of descriptors and the network architecture
that result in a neural network with the least %AAD.

If DE is considered the searching mechanism (or the descriptor reduction mechanism) of the
algorithm, artificial neural networks (ANNs) are the non-linear optimization tools of the
algorithm. In general ANNs are used to map complex non-linear relations between inputs (or
the independent variables) and the outputs (the dependent variables). In this work, a feed-
forward neural network with six neurons in the input layer and one neuron in the output layer
was used to model the relationships between the six descriptors and the output Kp. The number
of neurons in the hidden layers was set based on the last two elements of the representation
arrays, Di and Ti. Bayesian regularization was used as the optimization algorithm, because of
its advantages for small data sets over other training methods like early stopping (Mathworks,
2005). In addition to limiting the maximum number of neurons in each hidden layer to less
than 25, another constraint was imposed on the number of neurons in the hidden layers by
maintaining a degree of freedom ratio of at least two. The target values for the network were
the logarithmic transformations of the experimental Kp values. In addition, all inputs and target
values were normalized to have zero mean and a standard deviation of one. These
transformations avoid any bias in the model due to extremely low or high target or input values.
A flowchart for the complete algorithm is provided as Figure 1.

Model validation—As discussed previously, 25 CPEs were used to validate the model, which
consisted of the following: (a) twelve CPEs reported in the literature to be insulin enhancers
(literature CPEs), (b) eight CPEs that did not reduce significantly the skin resistance when
tested in our lab using the resistance procedure described previously (resistance CPEs), and
five CPEs whose Kp values were measured in our lab, but were excluded from the training data
(excluded CPEs). Since, the experimental conditions used for the 12 literature CPEs were
different from those used in the current study, comparisons between the experimental and
predicted values must be made carefully. The same holds true for the 13 resistance CPEs,
because of the poor correlation between the experimentally calculated Kp and RF values
measured in our lab. In spite of these differences, we expect our model to have the capability
of distinguishing effective CPEs from non-effective CPEs. From our experience with a large
number of CPEs on insulin permeation, we suggest that any CPE that leads to at least a threefold
increase in insulin permeability over that of the control value can be assumed safely to be an
effective CPE. Therefore, the predictions for the twelve literature CPEs must be at least 2.0
cm/h, which is three times the control value measured in our lab, and those for the eight
resistance CPEs must be lower than this value.

2.3. Statistical Analysis
All experiments were performed a minimum of three times, and single factor one-way analysis
of variance (ANOVA) was performed with a 95% confidence interval on the drug permeability
data. This was done to determine if the differences among these data at different experimental

Yerramsetty et al. Page 6

Int J Pharm. Author manuscript; available in PMC 2011 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conditions are greater than the errors due to random effects. A P-value less than 0.05 indicates
a significant difference between the two groups of data.

2.4. Sensitivity Analysis
Sensitivity analysis of the final neural network model was performed using four different
methods.

Neural interpretation diagram (NID)—A diagram representing the neural network
structure, along with the weights between the different neurons can be used to qualitatively
interpret the relationships between the output variable and the various input variables. Using
this approach, the connections between the neurons will be represented by lines whose
thickness depends upon the magnitude of the weights between them. Also, to differentiate
between the direction of contribution of the input variables to the output of a neuron, gray lines
and black lines will be used for negatively-contributing and positively-contributing inputs,
respectively. A NID therefore, provides qualitative information about the magnitude and the
direction of the effect of each input on the output. For a detailed discussion on NIDs and their
interpretation, the readers are referred to Olden & Jackson (Olden and Jackson, 2002) and Aoki
& Kamatsu (Aoki and Komatsu, 1997)

Garson's algorithm—This algorithm was proposed by Garson (Garson, 1991) to evaluate
quantitatively the relative importance of each input of a neural network towards the output. In
this algorithm, the magnitudes of the weights between each input and hidden neuron are used
to calculate the relative importance of the inputs. However, the directions of the effects of the
input variables cannot be deduced using this algorithm. A detailed discussion on the exact
methodology can be found elsewhere (Garson, 1991, Olden and Jackson, 2002).

Randomized connection weight approach—A randomized connection weight
approach was proposed by Olden and Jackson (Olden and Jackson, 2002) to eliminate null-
connection weights from the network that do not differ significantly from random values. In
brief, the procedure involved randomly generating the output values and constructing neural
networks for estimating these random output responses using the same input values that were
used to build the optimal final network. All the individual weights were recorded and the
connection weights and the overall connection weights for each input were calculated. These
weights for each input were calculated in the following manner:

• The products of the weights between the particular input and a hidden neuron in the
first hidden layer and the weights between this hidden neuron in the first layer and
another hidden neuron in the second hidden layer (or output layer if a second hidden
layer does not exist) and so on for all the hidden layers, was evaluated. This is called
the connection weight of the input.

• The sum of these products for each hidden neuron-input connection is called the
overall connection weight for each input.

The above procedure was carried out 999 times and the proportion of the connection weights
(including the original optimal network) which were larger in magnitude than the
corresponding connection weights, and the overall connection weights of the optimal network
were recorded. A weight is considered significant if this proportion is lower than 0.05 (for a
confidence level of 95 %) and insignificant otherwise.

Using this approach, the NID for the optimal network can be simplified markedly by
eliminating the insignificant weights. Also, by using the connection weight approach, the
direction of the effect of each input toward the output can be known. If the overall connection
weight of an input is positive, then the direction of its effect is also positive and if the overall
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connection weight is negative, then the direction of its effect is negative. This is advantageous
over Garson's algorithm, which does not reveal the directions of the effects of the inputs on
the output.

Leave one descriptor out analysis—The relative importance of each descriptor was
analyzed by leaving that descriptor out of the model and building a new neural network with
the remaining five descriptors. The %AAD of the resulting network, along with the number of
misclassifications in the validation set was recorded. A descriptor is considered important, if
the network built after excluding this descriptor has a high %AAD and a greater number of
misclassifications when compared to the original optimal model.

3. Results
3.1. Training

A neural network with one hidden layer was found to result in the least %AAD. Table 1
summarizes the statistical results for this network. The predicted and experimental Kp values
and the percent deviations for the predicted values for the 35 CPEs used for training are
tabulated in Table 2. A comparison of the experimental and predicted Kp values is shown in
Figure 2. Figure 3 provides a graphical representation of the deviations between the predicted
and experimental Kp values along with the uncertainties associated with each experimental
datum. Figure 4 is a pie-chart for percent uncertainties in the experimental Kp values and Figure
5 presents a pie-chart detailing the ranges of percent deviations between the predicted and
experimental Kp values.

3.2. Validation
The predictions for the 25 CPEs in the validation set are provided in Table 3. For the 12 CPEs
in the literature set, the predicted Kp values were all greater than 4.0 with dimethyl acetamide
and limonene being the two exceptions. For the 8 CPEs in the resistance set, the predicted
Kp values were considerably lower than 2.0 with 1,2-dichloropropane and azelaic acid being
the two exceptions. For the five CPEs in the excluded set, the maximum absolute deviation
observed was 32% in the case of 4-hydroxybenzaldehyde. The % AAD for the 5 CPEs in the
excluded set was 20%.

3.3. Sensitivity Analysis
Figure 6 presents the NID for the original optimal network. From this figure, it is clear that the
dominant connection weight between the sixth input (total dipole of the molecule) and hidden
neuron B is negative, and the connection between this hidden neuron and the output is positive.
Therefore, this input has a negative effect on insulin Kp. However, the fourth input (Kier &
Hall index (order 1)) has a dominant positive connection weight with hidden neuron B and
therefore has a positive effect on insulin Kp values. The connection weights of the fifth input
(RNCS relative negative charged SA (SAMNEG*RNCG) [Zefirov's PC]) are both positive,
and therefore, the overall effect of this input on the output is positive. For the other three inputs,
however, the direction of the effect on the outputs cannot be deduced from the magnitudes of
the connection weights alone.

Table 4 lists the descriptors used as inputs in the final optimal network and their physical
interpretation. Henceforth in the discussion, these descriptors will be referred to as D1, D2,
D3, D4, D5 and D6. Table 5 lists the relative importance (RI %) of these descriptors, calculated
using Garson's algorithm. Using the randomized connection weight approach described in
Section 2.4, the overall connection weights and the directions of the effects of the inputs on
the output are determined and tabulated in Table 5. From this, it is clear that all the inputs
except inputs 4 and 5 have a negative effect on the output. Figure 7 presents a bar chart for the
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magnitudes of the overall connection weights for all the six descriptors. Table 5 also lists the
results of the leave one descriptor out analysis. Removing either of the descriptors D4, D2, or
D6 resulted in high %AAD values when compared to removing D3, D5 or D1.

Table 6 lists the all the connection weights and the overall connection weights of the optimal
network and their statistical significance values (p-values) calculated using the randomization
procedure described in Section 2.4. From the table, it is evident that of the 12 input-hidden-
output connections, nine connections are statistically significant, and of the six overall
connection weights, five are significant, (i.e. p-values lower than the 0.05) at a 95% confidence
level. The overall connection weight of D3 was found to be insignificant. The NID shown as
Figure 6 can be simplified by removing the hidden layer and retaining only the significant
overall connection weights. The simplified NID is shown in Figure 8.

4. Discussion
The optimum model identified in this work was a 6-2-1 network, which was able to account
for 86% of the variation in the target property (Figure 2). The six best descriptors identified
by the algorithm are tabulated in Table 4. Using Garson's algorithm, the relative importance
of these descriptors was calculated to be in the following order: D3 > D2 > D4 > D6 > D5 >
D1 (Table 5). In contrast, the overall connection weights (Table 5) when ordered in decreasing
order of magnitudes gave rise to the following order: D4 > D6 > D5 > D2 > D1 > D3. Also,
the overall connection weight of Descriptor 3 is insignificant (p = 0.186 > α = 0.05 for 95%
confidence levels) whereas the other overall connection weights are significant (p < 0.05) when
analyzed using the randomization procedure described in Section 2.4. Clearly, RI% values
calculated using the Garson' algorithms are in contradiction with the overall connection weights
and the significance levels calculated using the randomization analysis. To clarify the issue,
the results from leave-one-descriptor-out analysis were evaluated. The larger the error in the
network that has been built after leaving out a descriptor, the greater is that particular
descriptor's significance. Table 5 summarizes these results for the six networks. As shown, the
relative order of importance is D4 > D2 > D6 > D5 > D1 > D3. This is similar to the order
calculated using the overall connection weight approach, with the exception of D2, which was
calculated to have a lower importance than D6 and D5 (Table 5) using the overall connection
weight approach. From the relative orders of importance calculated using the overall
connection weight approach and the leave-one-descriptor-out analysis, it is clear that D4 is the
most important of the descriptors, and D1 and D3 are the least important. This apparent
discrepancy with the RI% values calculated using Garson's algorithm is attributed to the
inability of this algorithm to consider the direction of weights. This shortcoming of the Garson's
algorithm has been discussed in detail by Olden and Jackson (Olden and Jackson, 2002).

The six descriptors, their types and their physical interpretation are provided in Table 4. D4
(Kier & Hall index (order 1)) is a connectivity index that according to Kier and Hall (Kier and
Hall, 2000), “encodes molecular structure in a non-empirical way and does not directly derive
from or translate into any particular physical property.” These authors have explained the
significance of this property from the view point of intermolecular accessibility. They have
reported that atoms with highly branched bonds would have limited access to their environment
and therefore would be involved in intermolecular reactions to a lesser degree than atoms that
have very little branching at their sites. Therefore, they have suggested that molecules with a
low degree of branching, which corresponds to a high value of the first order Kier & Hall
connectivity index, would be most likely to participate in intermolecular reactions. Since, this
descriptor has been identified as significant by the randomized overall connection weight
approach and the leave- one-descriptor-out analysis, and the direction of the overall connection
weight from this descriptor to the output is positive (Table 5), it is reasonable to assume that
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a molecule with relatively little or no branching should greatly enhance the permeation of
insulin when compared to molecules that are highly branched.

Since most CPEs enhance drug permeation by disruption of the lipid bi-layers, a molecule with
a low degree of branching would have its reactive sites well exposed to the bi-layers, and
therefore it can induce greater disruption of these layers by forming intermolecular bonds. As
opposed to branched molecules which have reactive sites shielded by neighboring atoms and
cannot participate sufficiently in chemical reactions. Hrabalek et al. (Hrabalek et al., 2005)
have reported significant drug enhancement by 6-aminohexanoic acid derivatives having a
small degree of branching. However, they have reported that higher order branching leads to
a decrease in enhancement activity. Also, Chantasart et al. (Chantasart et al., 2004) have
reported that branched alkanols have significantly lower enhancer potency than their straight
chain counterparts. Also, since the first order Kier & Hall index has been used to correlate
several physical properties like boiling point (Hall et al., 1975, Kier and Hall, 1976), water
solubilities (Hall et al., 1975) and also partition coefficients (Murray et al., 1975), we have
tried to correlate this descriptor and the octanol-water partition coefficients, as calculated using
Marvin calculator plug-in by ChemAxon (ChemAxon), for all the CPEs in the training set. 1-
dodecyl-2-pyrrolidone exhibited a large deviation from the linear trend-line and therefore was
excluded from the correlation. The resulting linear correlation between the two properties is
shown in Figure 9. Therefore, D4 could be considered as an indicator of the CPE's ability to
transport from the donor solution to the skin lipids. When the partition coefficients were
compared with the other five descriptors in the model, poor correlations were observed.

D2 relates to the reactivity at the site of oxygen atoms in the molecule. Since, the direction of
the effect of this descriptor is negative, large negative values of this descriptor lead to better
insulin permeation. Mathematically, this descriptor is inversely related to the energy gap
between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular
orbital (HOMO) of the oxygen atom (Katritzky et al., 1994). Therefore, molecules that have
high values of D2 have smaller HOMO-LUMO energy gaps. From a quantum-chemical
perspective, a small HOMO-LUMO energy gap indicates the ability of the molecule to
exchange electrons and therefore, D2 is a measure of the oxygen atoms in the molecule to
participate in chemical reactions. Narishetty & Panchagnula (Narishetty and Panchagnula,
2004a, Narishetty and Panchagnula, 2004b) have performed experimental studies on
permeation of Zidovudine in the presence of terpenes and suggested that the oxygen atoms in
the terpenes form competitive hydrogen bonds with ceramide molecules in the skin's lipid bi-
layers. This leads to the breakup of the compact lamellar network of these bi-layers and results
in enhancement of Zidovudine permeation. Assuming a similar mechanism in the current work,
the insulin permeation enhancement by molecules with highly reactive oxygen sites can be
explained.

While D1 is similar to D2, it describes the average reactivity of all carbon atoms in the molecule.
Since the direction of its effect is also negative and using a reasoning strategy analogous to
that used for D2, we may suggest that molecules with highly reactive carbon atoms disrupt the
skin lipid bi-layers by forming hydrogen bonds and therefore enhance insulin permeation.

D5 relates to the surface area of the molecule that is negatively charged. The positive effect of
this descriptor implies that a molecule with a larger negatively charged surface would enhance
insulin permeation more than a molecule with relatively smaller or no negatively charged
surface. This again conforms to the hydrogen bonding theory proposed in the previous
paragraph; greater the charged surface area of a molecule, greater is its chance of reacting with
the skin lipid bi-layers to form hydrogen bonds. Therefore, it appears that not only should a
molecule have highly reactive oxygen and carbon sites, but also these sites should be
sufficiently exposed to the lipid bi-layers to facilitate greater reactivity.
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D6 describes the total dipole moment of the CPE. The negative effect of this descriptor on
insulin permeability implies that good insulin specific CPEs have low dipoles. It has been
reported by some workers that molecules with large dipoles are not easily soluble in lipids
(Mazzenga and Berner, 1990), and also ionic forms of a drug fail to permeate through the skin
when compared to its non-ionic form, due to the former's low solubility in skin lipids (Abraham
and Martins, 2004). Therefore, it may be assumed that a molecule with a high dipole moment
would fail to partition into the lipid bi-layers and consequently cannot enhance insulin
permeation by disrupting these layers. D3, which again represents the reactivity of the
molecule, was found to be insignificant from the randomization analysis for the overall
connection weight. Therefore, it is highly likely that this descriptor has no part to play in the
mechanism of insulin enhancement and might have been included in the model only as a
correction factor for mathematical accuracy.

From the previous discussion concerning the physical interpretation of the descriptors involved
in the model, it is apparent that the enhancement effect of the CPEs is interplayed among their
structural attributes. On one hand, there are favorable structural features like the first order
Kier & Hall index which describes the lipid partitioning ability of the molecule and other
electronegative descriptors (reactivity indices of carbon and oxygen atoms and the negatively
charged surface area) that describe the ability of the CPE to react with the lipid bi-layers of the
skin. On the other hand, there is the total dipole of the molecule, which diminishes the efficacy
of a CPE by decreasing its lipid solubility. Therefore, the design methodology for a CPE
involves finding structures that account for these different attributes.

The validation for the best model identified was performed on 25 CPEs belonging to varied
functional groups. As can be inferred from Table 3, the model performed reasonably well in
predicting the permeabilities for new CPEs. However, there were four misclassified CPEs. 1,2-
dichloropropane and azelaic acid did not significantly reduce skin resistance and therefore are
expected to not disrupt the skin structure upon exposure. However, the model predicts high
insulin permeability values in their presence. This could possibly be due to the lack of sufficient
diversity in the training set with respect to this particular group of chemical structures. Also,
because of the relatively small size of the data set employed in the current work, the number
of descriptors in the model was limited to six which might not account for all the descriptors
relevant for describing the enhancement mechanism. One of the 12 literature CPEs, dimethyl
acetamide has been reported to be an insulin enhancer (Pillai et al., 2004b). In contrast, the
current model predicts no insulin permeation enhancement in its presence. This could possibly
be explained by the fact that in the work by Pillai et al. (Pillai et al., 2004b), this CPE has been
used at 100% concentration as opposed to the 5% w/v solution of CPE used in the current
study. Limonene was the other literature CPE that has been reported to enhance insulin
permeation in the literature (Rastogi and Singh, 2005), but the model in the current work
classifies it as a non-CPE (Table 3). This CPE needs to be investigated experimentally in the
future to determine if it enhances insulin permeation using the current experimental set-up.
Although Azone has been classified correctly by the current model as an insulin-specific
enhancer, the predicted permeability value of approximately 22 cm/h is far greater than the
experimental values observed in the current work. This could be due to the fact, that the training
set for the model did not include any Azone-like molecules. We seek to improve our model in
the future by including derivatives of Azone. As for the predictions for the five CPEs belonging
to the excluded set, the percentage absolute average deviation (%AAD) value was 20, which
is less than twice the error on the training set. This proves that the model not only classifies
the new molecules correctly into working and non-working categories, but also predicts the
insulin permeability values with reasonable errors.

Comparison of the elution times of the insulin standards with the other HPLC evaluations of
insulin permeated does not reveal any shift in the elution time. This can provide indirect
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evidence that cluster formation is not occurring; however, we do acknowledge the need for
additional biofunctionality and bioavailability analyses to characterize the insulin during
transport through the skin. This characterization will involve the performance of in vivo animal
testing and is the subject for future research.

5. Conclusions
The results from the current work lead to the following conclusions:

• A hybrid algorithm that combines differential evolution algorithms (DE) and artificial
neural networks (ANNs) provides a reasonably good predictive model for insulin
permeability in the presence of CPEs

• Descriptors found to be statistically significant included the following: average 1-
electron reactivity index for a C atom, minimum 1-electron reactivity index for a O
atom, Kier & Hall index (order 1), RNCS relative negative charged SA
(SAMNEG*RNCG) [Zefirov's PC], and total dipole of the molecule

• In general, greater hydrophobicity and reactivity increase a CPE's efficacy, and higher
dipole moments decrease the efficacy.
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Figure 1.
Flowchart for the differential evolution algorithm used.
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Figure 2.
Comparison of the experimental and the predicted permeability (Kp) values for insulin in the
presence of various CPEs.
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Figure 3.
Plot of percentage deviations between predicted and experimental permeability (Kp) values
for insulin in the presence of various CPEs. The error bars indicate standard deviations for
experimental Kp measurements.
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Figure 4.
Range of percentage uncertainties observed in the experimental permeability (Kp) data.
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Figure 5.
Range of percentage deviations observed between experimental and predicted permeability
(Kp) data.
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Figure 6.
Neural interpretation diagram (NID) for the optimal neural network. The thickness of the
connecting lines is proportional to the magnitude of the weights between the neurons. Black
lines indicate positive weights and grey lines indicate negative weights. Black input circles
indicate inputs that have an overall positive effect on the output and grey input circles indicate
those that have an overall negative effect.
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Figure 7.
Comparison of the overall connection weights of all six inputs to the network.
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Figure 8.
Simplified neural interpretation diagram (NID) displaying only the significant overall
connection weights, where black and grey indicate positive and negative effects, respectively.
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Figure 9.
Correlation between the first order Kier & Hall index and the octanol-water partition coefficient
(Log Kow) for the various CPEs.
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Table 2

The experimental and predicted permeability (Kp) values for all 35 CPEs. The percentage deviations between
the experimental and predicted values are also shown.

CPE Predicted Kp (10-3, cm/
hr)

Experimental Kp ±
Standard Deviation (10-3,

cm/hr)
Deviations (%)

octanoic Acid 4.56 4.9 ± 0.8 6.9

decanoic acid 4.64 4.7 ± 1.4 1.4

oleic acid 3.97 3.8 ± 0.6 -4.5

lauric Acid 4.94 6.1 ± 2.2 19.0

menthone 4.18 2.4 ± 0.7 -74.2

4-octanone 3.09 4.1 ± 1.0 24.6

pulegone 1.56 1.7 ± 0.3 8.4

cycloundecanone 5.54 5 ± 0.4 -10.8

cis-4-hexen-1-ol 2.34 2.4 ± 0.5 2.5

nonanol 3.74 3.7 ± 0.5 -1.0

decanol 3.67 4.6 ± 0.3 20.1

octanal 4.40 5 ± 0.6 12.1

N,N-dimethylisopropylamine 2.64 2.8 ± 0.9 5.7

octylamine 3.31 3.9 ± 1.3 15.2

2,4,6-collidine 1.06 1.3 ± 0.1 18.7

1-dodecyl-2-pyrrolidinone 1.25 1.1 ± 0.1 -14.0

cetyltrimethylammonium bromide 2.19 2.4 ± 0.3 8.6

2-chlorotoluene 5.72 8 ± 1.5 28.5

dimethyldisulfide 4.64 5.8 ± 0.6 20.0

2-sec-butylphenol 4.69 5.6 ± 0.8 16.2

3-methyl-2-oxazolidinone 0.49 0.5 ± 0.1 1.3

nonane 1.01 0.8 ± 0.1 -25.9

2-methyl butane 0.52 0.5 ± 0.1 -4.9

acetophenone 0.87 0.9 ± 0.1 3.4

1-bromobutane 6.52 7.6 ± 1.8 14.2

1-bromohexadecane 2.35 2.1 ± 0.9 -11.9

2-heptanone 2.26 1.6 ± 0.6 -41.0

5-methyl-2-hexanone 2.00 1.4 ± 0.2 -43.0

benzylbromide 6.62 4.8 ± 1.6 -37.9

ethyl-2-methylpentanoate 3.17 3 ± 0.8 -5.7

hexachloro-1,3-butadiene 2.81 2.3 ± 0.5 -22.2

hexanal 1.97 2.3 ± 0.1 14.6

methylcaproate 4.06 4 ± 0.5 -1.4

valeraldehyde 1.17 1.2 ± 0.2 2.1

1-methyl-2-pyrrolidone 0.57 0.5 ± 0.1 -13.9
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Table 3

Predictions for the validation set. The resistance reduction factors (RF) and the experimental permeability (Kp)
values are included wherever available.

CPE Predicted Kp (10-3,
cm/hr)

Experimental Kp (10-3,
cm/hr)

RF = R0/R6

Resistance set: Predicted Kp value must be lower than 2.0

1,2-dichloropropane* 4.5 -- 3.3 ± 0.8

1-pentene 0.5 -- 7.0 ± 2.6

1-pentyne 0.5 -- 3.5 ± 0.3

azelaic acid* 5.0 -- 1.2 ± 0.1

cyclopentane 0.5 -- 3.9 ± 0.1

salicaldehyde 0.5 -- 4.8 ± 0.1

salicylic acid 1.6 -- 5.8 ± 0.4

ethyl acetate 0.6 -- 4.3 ± 0.7

Literature set: Predicted Kp value must be greater than 2.0

linoleic acid (6, 55) 4.0 -- --

limonene oxide (19) 5.0 -- --

menthol (19) 4.5 -- --

isopropyl myristate (7) 4.5 -- --

dimethyl acetamide* (7) 0.5 -- --

palmitic acid (55) 5.4 -- --

palmitoleic acid (55) 4.5 -- --

stearic acid (55) 4.0 -- --

linolenic acid (55) 4.2 -- --

limonene* (55) 0.8 -- --

azone (23, 24) 21.8 -- --

dodecyl-L-pyroglutamate (24) 4.6 -- --

Excluded set: Predicted Kp value must be close to experimental Kp value

2-methylcyclohexanone 2.3 1.8 ± 0.3 --

3-methyl-2-hexanone 2.0 1.6 ± 0.4 --

4-hydroxybenzaldehyde 1.0 1.5 ± 0.2 --

acetanilide 0.9 0.9 ± 0.1 --

tertbutylacetic acid 1.8 1.5 ± 0.1 --

*
indicates a CPE that has been misclassified by the model
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Table 4

The descriptors used in the final model and their physical interpretation.

Input Descriptor Name Descriptor Type Physical Interpretation

D1 Average 1-electron reactivity index
for a C atom Quantum-chemical Reactivity at the site of C atoms

D2 Minimum 1-electron reactivity index
for a O atom Quantum-chemical Reactivity at the site of O atoms

D3 Max atomic orbital electronic
population Quantum-chemical Nucleophilicity of the molecule

D4 Kier&Hall index (order 1) Topological Molecular branching

D5 RNCS Relative negative charged SA
(SAMNEG*RNCG) [Zefirov's PC] Electrostatic Nucleophilic portion of the molecule's

surface

D6 Tot dipole of the molecule Quantum-chemical Charge distribution of the molecule
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