
Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

A numerical framework for drug transport in a multi-layer system with
discontinuous interlayer condition

Kristinn Gudnason⁎,a, Sven Sigurdssona, Bergthora S. Snorradottirb, Mar Massonb,
Fjola Jonsdottira

a Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Iceland
b Faculty of Pharmaceutical Science, University of Iceland, Iceland

A R T I C L E I N F O

Keywords:
Discontinuous boundary conditions
Targeted drug delivery
Controlled release

A B S T R A C T

Discontinuous boundary conditions arise naturally when describing various physical phenomena and numeri-
cally modelling such conditions can prove difficult. In the field of pharmaceutical sciences, two such cases are
the partitioning of a compound between different materials and a flux rate membrane controlling mass transfer
between materials which both result in a discontinuous jump in concentration across adjacent materials. In this
study, we introduce a general one-dimensional finite element drug delivery framework, which along with dif-
fusion, reversible binding and dissolution within material layers, incorporates the partitioning and mass transfer
conditions between layers of material.

We apply the framework to construct models of experiments, which along with experimental data, allow us to
infer pharmacokinetic properties of potential material for drug delivery. Understanding such material properties
is the key to optimising the therepeutic effect of a targeted drug delivery system.

1. Introduction

For the treatment of localized diseases, therapuetic levels of medi-
cation need to be sustained in areas which can be hard to reach.
Effective optimization techniques for targeted drug delivery require
understanding of the various pharmacokinetic processes involved.
Mathematical models that accurately describe these processes are a
valuable tool in the estimation of the properties of potential drug car-
rying materials, which can subsequently be used to forecast the dis-
tribution within specific regions of the body during delivery.

In this paper, a numerical framework that incorporates the physical
processes required to simulate various drug delivery systems is in-
troduced. The framework presented is a one-dimensional, multi-layer
model that is governed primarily by a diffusion-reaction equation, but
also allows for two types of coupled secondary state, chosen in-
dependently within each layer. The secondary state is governed by ei-
ther the Noyes–Whitney equation, as presented by Frenning et al. [1,2],
or the two-phase mathematical model presented by Pontrelli and de
Monte [3], for transdermal drug delivery. Our numerical model can be
applied to the modelling of drug release from a delivery device to the
target area with dissolution, absorption, and reversible binding taking
place in any of various layers involved, both in the delivery device and
target system.

One of the challenging aspects of numerical modeling in this context
is accurately considering the interface conditions and the associated
discontinuities in drug concentration that stem from both partitioning
and interfacial resistance or surface barriers. This is a challenging
subject that has been considered in the past by e.g. Hickson et al. [4]
and Rim et al. [5]. Rim et al. constructed a finite element model for
transdermal drug delivery, incorporating the effects of partitioning
between layers. Their approach is based on decomposing a partition
interface into two adjacent boundaries belonging to separate layers. A
mixed method is employed, whereby cross boundary normal flux and
concentrations at each boundary are modeled as independent variables.
McGinty and Pontrelli [6] recently presented a drug release-absorption
model based on finite differences that deals with discontinuities in
concentration caused by interlayer mass transfer conditions which de-
scribe interfacial resistance. Their model is based on a special difference
scheme developed by Hickson et al. [4]. The models developed by
Hickson et al. and Rim et al. both contain a concentration discontinuity
condition across the boundary. Gupta et al. [7] introduced a model
characterizing transport of a lipophilic solute across the cornea with
good comparisson with trans-corneal concentration profiles from ex-
periments. Results exhibit the importance of incorporating the effects of
partitioning and interfacial resistance between the epithelium, stroma
and endothelium layers as well as at outer boundaries. Pimenta et al.
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[8] successfully determined the partition coefficient of poly-hydro-
xyethylmethacrylate and silicone based hydrogels in combination with
three different drugs.

The work presented in this paper incorporates all the boundary ef-
fects mentioned above, including partitioning, mass transfer effects and
flux continuity, into a finite element formulation that eliminates the
need for additional variables or special schemes at the boundaries. The
approach is based on a two step construction. First, the finite element
scheme is constructed separately for each layer with arbitrary flux
conditions at the outer boundaries of each one. Following that, the layer
equations are assembled into a global scheme that ensures continuous
flux between layers while at the same time satisfying the interlayer
boundary conditions.

The capabilities of the numerical framework presented are demon-
strated, and the importance of incorporating both partitioning and mass
transfer effects is highlighted by constructing models describing dif-
ferent aspects of drug transport. The numerical framework is used to
simulate three cases. First, we simulate an moxifloxacin impregnated
intra-ocular lense in a Franz diffusion cell with three different thick-
nesses of lens material. The results are compared with experimental
data. The second case models a two phase transdermal system devel-
oped by Pontrelli and de Monte [3]. The third case is a reevaluation of
data presented in Snorradottir et al. [9], on transdermal drug delivery.
Results show the importance of having interlayer conditions that in-
clude both partition and mass transfer effects and that the proposed
framework can apply successfully to all the cases considered.

2. Model

The mathematical model presented below consists of two coupled
partial differential equations, describing possible drug related physical
processes taking place within a sequence of layers of different materials,
along with general boundary conditions capturing possible cross layer
mechanisms. The model is one-dimensional with respect to space.

2.1. Layer equations

Within a given layer α, of thickness Hα, demarked by points −xα 1 and
xα, we model two variables, an unbound fluid state Cα and a bound
secondary state Sα in terms of concentration (mg/cm3), with the fol-
lowing set of coupled partial differential equations
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where Dα is the diffusion coefficient (cm2/h), dα is a decay coefficient
within the layer, which may e.g. describe leakage or metabolic con-
sumption (1/h). The term bα(Sα(x, t), Cα(x, t)) relates the binding and
unbinding process. We use schematic diagrams, such as the one de-
picted in Fig. 1, to vizualize models. In order to describe the release
from solid drug systems we let Sα signify the solid state and choose the
Noyes–Whitney equation [10] to describe dissolution
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where kd,α is the dissolution rate coefficient of solid drug (cm/h), cs,α is
the solubility of the drug (mg/cm3), A0,α is the initial surface area of the
solid drug per unit volume (cm2/cm3), where the drug particles are
assumed implicitly by the model to retain their shape as the drug dis-
solves such that the surface area is proportional to the volume to the
power of 2/3 [11]. Initial concentrations of bound drug Sα(x, 0) and
unbound drug Cα(x, 0) must be specified in each layer. Expression (2)
can be made linear with respect to the secondary state variable by

introducing a new dependent variable ̂ =S x t S x t( , ) ( , )α α
1/3 as is done in

[9]. Then (1) becomes
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where ′ =k k A S x/ ( , 0)α α α α0, is the effective dissolution rate (cm3/
[mg h]). The presentation of the finite element approximation and the
time stepping procedure in this paper is based on the assumption that
the secondary state equation is linear with respect to the secondary
state variable, as well as the primary state equation being linear with
respect to the primary state variable. Note that Eq. (3) and the mod-
ification after Eq. (4) both satisfy this assumption. The binding and
unbinding process can be in the form of a two-phase equation

= − +b S x t C x t k S x t k C x t( ( , ), ( , )) ( , ) ( , )α α α α α1 2 (4)

where k1 and k2 are unbinding and binding rate coefficients (1/h), re-
spectively. In some applications it is appropriate to assume a con-
servation condition for binding by replacing the k2 coefficient with

′ −k S S x t( ( , )),max α α2 , where Smax,α denotes the density of binding sites
[6]. In this case the model is non-linear and the present finite element
method has to be modified by linearizing the equation in an appropriate
way.

2.2. General boundary conditions

Between layers we define general interlayer boundary conditions
with which we are able to describe the combined mechanisms of par-
titioning and mass transfer rate.

A partition between layers, occuring at xα, describes a concentra-
tion discontinuity in equilibrium determined by the ratio Pα, refered to
as the partition coefficient (dimensionless). The ratio controls the
jump in concentration on one side of an interface proportionally with
respect to the concentration of the other side. The mass transfer
coefficient Kα (cm/h) controls the flux resistance across the interface
possibly due to a thin diffusion barrier. For interlayer boundary point
xα, we have
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Low Kα slows the rate at which the ratio of concentration difference
between the layers approaches the ratio Pα. Sometimes it may be more
appropriate to express the right-hand side of (5) as

′ ′ − +K P C x t C x t( ( , ) ( , ))α α α α α α1

This can be realised by setting = ′ ′K K Pα α α and = ′P P1/α α. When needed
we shall refer to K and P as the layer α / layer +α 1 mass transfer and
partition coefficients respectively and refer to K′ and P′ as the layer

+α 1 / layer α mass transfer and partition coefficients. For simplicity,
we may refer to the flux at xα as Jα. Alternatively, we can express (5) as

−− + +K C x t K C x t( , ) ( , )α α α α α α1 (6)

and refer to =−K Kα α and = = ′+K K P Kα α α α as the left and right rate
coefficients at =x x ,α cf. (4). At outer boundaries x0 and xN we define
general outer boundary conditions in a similar manner
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where Cb,0 and Cb,N are specified concentration values outside the first
and last layer, respectively. These general conditions can be reduced
to the following special cases:

(a) Kedem–Katchalsky condition
By setting =P 1,α in (5), the general boundary condition reduces to

the Kedem–Katchalsky condition
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which can also be interpreted as the left and right rate coefficients in (6)
being the same. It can be used to describe a thin rate controlling barrier
with thickness h and diffusion coefficient D where D/h→Kα as h→ 0.

(b) Partitioning condition
Note by dividing (5) by Kα and setting Kα→∞ that we have
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and so setting Kα ‘high’ effectively reduces the boundary condition to
the partitioning condition

− =+C x t P C x t( , ) ( , ) 0α α α α α1

which can also be interpreted as having differing rate coefficients in (6)
and the flux being negligible in comparison.

(c) Control barrier with partition
Assume that we have a thin controlling barrier layer with thickness

h and diffusion parameter D, inserted between layers α and +α 1, and
that the partition coefficients, between layer α and the barrier and
between the barrier and layer +α 1, are −P and +P , respectively.
Likewise, we signify concentration at the different sides of the barrier to
be −C and +C , respectively. Assuming a constant spatial concentration
gradient through the barrier, we have =− −

−C P C x t( , )α α
1 and

=+ + +C P C x t( , ),α α1 and the concentration profile through the barrier is
linear. This leads to the following expression for the flux through the
barrier
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and thus as h→ 0 the effect of the barrier reduces to condition (5) with
=

−
Kα

D
hP and = − +P P Pα .

Note that continuous concentration across an interlayer boundary
can be achieved by setting =P 1α and setting Kα ’high’ as was done to
evoke the partitioning condition so that − ≈+C x t C x t( , ) ( , ) 0α α α α1 .
Also note, that by setting =K 0,α an impermeable concentration barrier
is created resulting in =J 0α .

2.3. Finite element formulation

We now describe how we numerically approximate the mathema-
tical model outlined above. The discretization approach is based on a
two step contruction. First, the finite element scheme is constructed
separately for each layer with arbitrary flux conditions at the outer
boundaries of each one. Following that, the layer equations are as-
sembled into a global scheme that ensures continuous flow between
layers while at the same time satisfying the interlayer boundary con-
ditions.

Discretization within layers
Over a given interval = +I x x[ , ],j j j 1 contained within layer α, with

= ⋯ −j n0, 1, , 1,α we have the weak formulation of the primary phase
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where w denotes a test function and the x-directional flux at xk is de-
fined as

= − ∂
∂ =

f D C
xα x α

α

x x
, k

k

which we will get back to later. Here nα is the number of intervals
within layer α and we shall assume that they are all of the same length

=h H n/ ,α α α i.e. =I hj α for all j.
In order to obtain a linear approximation over interval Ij, we define

Fig. 1. A schematic model showing diffusion and decay, coupled with secondary state within layer α. General boundary conditions are shown at interlayer boundaries.
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linear nodal basis functions φj and +φj 1 at xj and +xj 1 respectively, such
that φj and +φj 1 take the value 1 at xj and +xj 1 respectively and the value
0 at the opposite node. Thus we may approximate Cα(x, t) and Sα(x, t)
over Ij with C x t( , )α and ̂S x t( , )α
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where cα, j(t) and sα, j(t) are time dependant coefficients of primary and
secondary phases amounting to the approximate values for Cα and Sα at

=x xj.
Now let Mα denote the local mass matrix, Mα the lumped form

approximation thereof and Kα denote the local stiffness matrix. For a
linear approximation we have that
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where hα is the length of Ij. First we discretize the left hand side of (8)
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Discretizing the terms depending only on Cα on the right hand side of
(8), we get
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Finally, in the two-phase case we discretize the last term of (8) as
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The procedure for the Noyes–Whitney equation is similar after using
the transformed Eqs. (3). Note that in the equation for the primary
phase we treat ̂S x t( , )α

2
as a given value along with cs and in the

equation for the secondary phase we treat Cα(x, t) as given. Introducing
the notation

= − − + =C K M S MD d k k( ( ) )L Lα α α α α1 2

we are now ready to express the discretisation over Ij in the two phase
case in matrix vector form as
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For now, we treat the secondary state variables as given as we develop a
formulation with which we will update the primary state variables.
Assembling contributions over all Ij leads to the discrete approximation
for layer α, expressed as a matrix equation of the following form:
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where local matrix CL contributes to the tridiagonal matrix, signified by
x, and the local matrix SL contributes to the load vector, signified by y.
Along with y, the interlayer flux fα,0 and f ,α n, α which we get from (5),
contribute to the load vector
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whereas all interelement fluxes cancel out by flux continuity. In the
case of the first and last layers, f1,0 and f ,N n, N respectively, have to be
specified by the given outer boundary conditions (7).

Global assembly
To create a global system of equations, we need to assemble the

layer systems. This involves inserting the interlayer flux from the load
vectors into the global matrix. In the case of the interface between
layers α and +α 1 we have fluxes fα n, α and +fα 1,0 noting that the distinct
variables, cα n, α and +c ,α 1,0 are the approximations for −C x t( , )α α and

+C x t( , )α α respectively.
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This leaves all flux contributions to the load vector empty except for
the top

⎡

⎢
⎢
⎢ ⋮

⎤

⎥
⎥
⎥

= ⎡

⎢
⎢
⎢

+

⋱ ⋱ ⋱

⎤

⎥
⎥
⎥

⎡

⎢
⎢
⎢ ⋮

⎤

⎥
⎥
⎥

−
⎡

⎢
⎢
⎢

+

⋮

⎤

⎥
⎥
⎥

x x
x xx x

y
yh d

dt

c
c

K P c
c

K C

2
2

b
1

1,0

1,1
0 0 1,0

1,1
0 ,0

and the bottom

⎢

⎣

⎢
⎢

⋮ ⎥

⎦

⎥
⎥

=
⎢

⎣
⎢
⎢

⋱ ⋱ ⋱

+

⎥

⎦
⎥
⎥

⎢

⎣
⎢
⎢

⋮ ⎥

⎦
⎥
⎥

−
⎢

⎣

⎢
⎢

⋮

+

⎥

⎦

⎥
⎥

− −x xx x
x x

y
y

h d
dt

c
c K

c
c K P C2

2N
N n

N n N
N n

N n N N b N

, 1

,

, 1

, ,
N

N

N

N

and these fluxes are specified by the given outer boundary conditions
(7). Thus, we are left with a system of equations, of size ∑ += n( 1),α

N
α1

of the form

= −M c A c ld
dt c c (12)

where M is a diagonal matrix, Ac is a tridiagonal matrix, the con-
struction of which was described above, l is the load vector and c is the
vector of primary state variables. Taking the secondary state variables s
as given, Eq. (12) is linear.

Now, considering the secondary state of (1), we arrive at a dis-
cretization of the left hand side in a similar way as (9), whereas the
right hand side discretization is derived from Eq. (10) or from a cor-
responding equation derived from (3) in the case of solid drug dis-
solution resulting in the following linear system

= −M s A s ld
dt s s (13)

where As is a diagonal matrix in the two-phase case, applying mass
lumping, and is empty in the drug dissolution case. Note that no flux
values are involved in the secondary state so that the assembly is
straight forward.

While we are restricting our attention to one-dimensional problems,
we note that the same type of two step construction can be applied to
finite element discretizations in higher dimensions with corresponding
boundary conditions between subregions rather than layers. While the
matrices Ac and As will remain sparse, the non-zero structure will,
however, be much more complex.
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Time evolution
We now set out to solve the two coupled ODE’s (12) and (13) in

tandem aiming to make use of the special structure of these equations in
a numerically efficient and stable manner. In our timestepping algo-
rithm we first update s values with a one-step explicit Euler scheme. We
then update the c values with an implicit one-step theta method, in-
volving the solution of (12). We then update s again, involving a similar
theta method. If the maximum of the differences between the two up-
dated s values is within a given tolerance, tol, we proceed to the next
timestep, otherwise we repeat the calculation of the c values using
updated s values, followed by a new updating of these values, and so on
until a limit of max iterations is reached. The procedure for updating
one-step thus becomes:

Note that the matrices M and − ∼M AtθΔ s are diagonal so that the
solution of the corresponding equations is trivial. Moreover, the matrix

− ∼M AtθΔ c is tridiagonal so that we have an efficient algorithm also for
the solution of that equation.

Other methods
While discontinuity interlayer conditions due to partition and/or

mass transfer effects are presented in a number of papers on drug
transport and related processes [7,12,13] the exact treatment of these
conditions in simulations is rarely specified. When applying general
software packages such as ANSYS, these conditions are often dealt with
in some indirect way, such as adopting so-called normalized approach
in ANSYS 14.5 to deal with partition. Here, great care has to be taken to
avoid erroneous results, cf. eg.[14]. Similarly, in COMSOL general
discontinuity interlayer conditions can only be dealt with in a round-
about way; see [15].

A general finite element approach for dealing with discontinuous
interior boundary conditions within the framework of domain decom-
position methods is typically based on discontinuous Galerkin finite
element methods along with interior penalty functions, see e.g. [16], or
on extending the finite element method by special enrichment functions
(X-FEM), to account for non-smooth behaviour, see e.g. [17]. For the
special type of interior boundary conditions considered in this paper it
seems, however, more appropriate to incorporate them explicitly.

Rim et al. [5] did construct a finite element model for transdermal
drug delivery incorporating explicitly the effects of partitioning be-
tween layers, by decomposing a partition interface into two adjacant
boundaries, each belonging to separate layers as is done in our ap-
proach above. The method employed to incorporate this condition is,
however, a mixed method whereby cross boundary normal flux is
modeled as independant variables, in addition to the concentrations at
each boundary.

Using finite differences as the numerical basis, a special difference
scheme was developed by Hickson et al. [4], to deal with discontinuity
in concentration between layers caused by an interlayer mass transfer
condition.

Both above approaches maintain a flux continuity condition across
the boundary. In our framework, all boundary effects mentioned above,
including partitioning, mass transfer effects and flux continuity, are
incorporated into the finite element formulation without having to in-
troduce any additional variables or special schemes at the boundaries.
This is achieved by first applying the finite element scheme separately
to each layer with arbitrary flux conditions at the outer boundaries of
the layer, and then assembling the layer equations into a global scheme
so that flux between layers remains continuous, but also satisfies the
interlayer boundary conditions.

Further note, that according to the finite element scheme we are in

fact approximating − ∂
∂ =
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since we satisfy the differential equation at =x xk. Thus, we are
achieving a second order approximation without having to include

+cα k, 2 as is done in the second order difference scheme of [4] for the flux
at an interlayer boundary.

3. Simulations

Having constructed the numerical model in 2.3, we now turn our
attention to the modelling of specific cases to demonstrate its useful-
ness. In two cases, experimental data is used to deduce relevant phar-
macokinetic processes and to quantify corresponding parameters. The
data considered in this article are release curves from Franz diffusion
cell (FDC) experiments whereby a test material is held in place between
a drug loaded donor chamber (DC) and a receptor chamber (RC), filled
with release medium; see Fig. 2. A description of the constituents of the
medium and the experiment can be found in the supplement. A model
describing the transport of drugs from the donor chamber, through the
test material and into the receptor chamber is needed to asses the
material properties; see Gudnason et al. [18].

In Section 3.1, an FDC system containing intraocular lens (IOL)
material is considered, where descriptive parameters are deduced from
three different thicknesses of IOLs. In 3.2, we model a transdermal
system and compare the results with the semi-analytical approach of
Pontrelli and de Monte [3]. In 3.3, we reconsider the transdermal ex-
periment from Snorradottir et al. [9] and deduce descriptive parameters
of skin from two separate FDC systems.

Fig. 2. Schematic depiction of Franz diffusion cell (FDC) [19]. Initially, release medium is
loaded into receptor chamber (RC) and drug solution loaded into the donor chamber
(DC). Drug then proceeds through the material and into the RC until equilibrium is
reached. Meanwhile, samples are extracted from the RC, the concentration of which is
measured. The measured concentration values form a release curve from which drug
related properties of the material are inferred.
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3.1. Intraocular lens simulations

Moxifloxacin loaded FDC experiments had been carried out on the
intraocular lens material CI26Y by Elvar Orn Kristinsson under the
supervision of Mar Masson at the Faculty of Pharmaceutical Science,
University of Iceland, see supplement. The material had been provided
by PhysIOL [20]. CI26Y is a hydrophilic material composed of 2-hy-
droxyethyl methacrylate and methylmethacrylate and has water con-
tent of 26%. The experiments were carried out on three different
thicknesses of the material: 1 mm, 0.2mm and 0.1mm. We assume
general interlayer boundary conditions at the lens boundaries with the
same partition and mass transfer values between lens and liquid on both
sides and that the only transport mechanism within the lens is diffusion.
A schematic diagram of the model for the systems is shown in Fig. 3,
which shows the diffusion equation within each layer and general
boundary conditions at lens-donor and lens-receptor boundaries. The
length of donor and receptor layers are 2.36 cm and 18.86 cm respec-
tively. The different lens thicknesses were used to model the lens layer.
The initial concentration drug solution in the DC is 5 mg/ml. Since
stirring is applied to the receptor chamber, Dγ is set large enough to
enforce instant distribution =D 10 (cm /h)γ

5 2 . We also choose to set
=D 10 (cm /h)α

5 2 . The IOL parameters Dβ, Pl and Kl, were adjusted
manually to obtain simulated release curves which fit to experimental
data. Good agreement with experiments was achieved applying the
same parameter values to all thicknesses; see Table 1.

The low mass transfer parameter value indicates possible interfacial
resistance. In Fig. 4, we can see how simulated concentration varies
with time in RC compared with experimental data. In Fig. 5, simulated
values in DC are shown. Note that these values remain spatially con-
stant through these chambers due to the high parameter values of Dα
and Dγ. RC and DC concentration curves were calculated by taking the
mean value within respective layers. Figs. 6–8 show concentration
profiles throughout the lenses at different times.

The DC curves show that there is only a relatively small drop in DC
concentration. Notable among the three RC curves is that in the case of
1mm the RC concentration stays at zero throughout the whole dura-
tion.

More details can be obtained by analyzing the concentration

profiles. In the case of 1mm, we can see that drug levels barely rise
halfway through the material, at =x 0.5 mm. This is caused by the low
diffusion value and the relatively long travel distance.

Fig. 3. A schematic model of FDC experimental systems for IOLs.

Table 1
Fitted parameter values used for the simulation of release curves in moxifloxacin loaded
FDC experiments with the IOL material CI26Y.

Dβ (cm2/h) Pl (–) Kl (cm/h)

−8.77·10 7 12.65 −5.60·10 5
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Fig. 4. Simulations of how concentration varies with time in RC in FDC experiments done
on IOLs of different thicknesses. Each curve corresponds to a certain thickness. The same
set of parameter values was used in each simulation; see Table 1. The vertical bars show
the range of measured values in the experiments that were repeated three times. The
circles show the average value from these three experiments.
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The 0.1mm profile at =t 225 h however has a constant spatial
gradient whereas at the same time the profile is slightly convex for
0.2 mm. In all cases, we can observe at the DC boundary, a gradual
increase of drug levels as the ratio of concentrations between lens and
DC layers increases and is bounded from above by the Pl value, see
Table 2. The low Kl value slows the rate at which the ratio approaches
the value Pl. Finally, we note that initial attempts to obtain simulations
agreeing with experiments that only involved partition effects without
mass transfer effects proved unsuccessful.

3.2. Trasdermal two-phase system

In Pontrelli and de Monte [3] a two-layer transdermal drug delivery
model is described with results obtained with a semi-analytical ap-
proach. The model comprises a vehicle and skin layers and describes
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Fig. 5. Simulations of how concentration varies with time in DC in FDC experiments done
on IOLs of different thicknesses. Each curve corresponds to a certain thickness.
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Fig. 6. Concentration profiles through 0.1mm lens at different times.
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Fig. 7. Concentration profiles through 0.2 mm lens at different times.
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Fig. 8. Concentration profiles through 1mm lens at different times.

Table 2
Computed discontinuity at donor-lens boundary given as ratio Cβ/Cα at different times for
different thicknesses of IOL.

3 h 15 h 75 h 225 h

0.1 mm 1.3 2.7 5.2 7.3
0.2 mm 1.3 2.7 5.0 7.0
1.0 mm 1.3 2.7 5.0 6.9
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diffusion and binding/unbinding within the layers, as well as, mass flux
resistance between the two without partition. The mathematical sche-
matic is shown in Fig. 9. We apply our numerical framework to this
model using the same parameter values as [3]; see Table 4. We get
curves which agree with those obtained by the semi-analytical ap-
proach and shown in [3]. The numerical results are presented in
Figs. 10–12 and Table 4 . The main purpose of these simulations was to
verify our framework in the case when the secondary state is described
by the two-phase Eq. (4) since we did not have any experimental results
for such a case.

In Table 4, the percentage of the two drug mass phases retained in
each layer at different times are presented for the case when =k 0.36,α1,

=k 0.36,α2, =k 0.36β1, and =k 0.36β2, (1/h). These results can be com-
pared directly with results in Table 1 in [3] (Table 3).

Fig. 9. A schematic model of two-phase transdermal system of [3]. Note the sink conditions on the skin outer boundary.
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Fig. 11. Concentration profiles within vehicle layer at different times. Top: bound phase
profiles. Bottom: Unbound phase profiles.
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3.3. Skin experiments

The framework of this paper offers an extension of the mathematical
model employed in Snorradottir et al. [9] in order to simulate drug
diffusing through skin. The previous model did not include mass
transfer at interlayer boundaries, i.e. only included partition, defined
implicitly throuh cs values. Furthermore, drug sampling in RC is now
accounted for explicitly, resulting in a discontinuous drop in con-
centration at each sampling time.

We simulated again with the current framework two ibuprofen ex-
periments, described in [9], which both involve drug diffusing through
skin, in order to deduce the physical parameter values assumed to be
the same for both experiments. We constructed a DC-Skin system
model, similar to the model introduced in 3.1 and a Matrix-Skin system
model, where instead of a donor chamber, a silicone matrix containing
solid drug is inserted. Schematic diagrams of the models for the ex-
perimental systems are shown in Fig. 13. Silicone matrix layer para-
meters describe drug properties within the silicone. They include: k′,
the effective dissolution of the solid drug; cs, the solubility of the dis-
solved drug; and Dα, the diffusion of dissolved drug. Descriptions of the
preparation of the silicone matrix material can be found in [9].

As is the case in 3.1, stirring is applied to the receptor chamber and
the value of Dγ is assumed to be large ( =D 10 (cm /h)5 2 ) to enforce
instant distribution. The diffusion value of Dα for the DC-Skin system is
also assumed to be large. The diffusion value of the skin layer Dβ, as
well as skin-receptor boundary parameter values Pβ and Kβ are assumed
to be the same in both DC-Skin and Matrix-Skin models, whereas the
values for Pα and Kα, are different in both models; in the DC-Skin system
they reperesent the skin-DC boundary and in the Matrix-Skin system
they represent the skin-matrix boundary. Values for Dβ, Pβ, Kβ, and both
cases of Pα and Kα were adjusted manually to obtain simulated release
curves which fit to experimental data. Additionally, the matrix values
for Dα, k′ and cs were chosen to be close to the values selected in [9].
The initial concentration of the solid drug in the matrix layer is 1.1 · 102

mg/ml and the initial concentration drug solution in the DC is 1.9 · 102

mg/ml. The thicknesses of the various layers are; skin 0.07 cm; matrix
0.2 cm; DC 1.13 cm and RC 6.78 cm.

In Fig. 14, simulations are compared to data on how concentration
varies with time in RC as well as showing similar simulations for the DC
curve of the DC-Skin system. Discontinuities of the simulated RC con-
centration are a result of sample extraction. As 0.6ml samples were
taken from the 12ml receptor chamber, and replaced with fresh
medium, the concentration within the RC was reduced in proportion to
the actual concentration loss. This was done by inserting a new spatially
constant RC concentration profile 5% lower than the calculated mean
value at the time of sampling.

Inferred parameter values are displayed in Table 6. Layer parameter
values are mostly the same as in [9] except that the solubility is slightly
higher and in fact closer to the value of −4.2·10 mg/ml,2 obtained from a
direct independant measurement.

Solid and dissolved concentration profiles through the matrix for
the Matrix-Skin system are presented in Fig. 15. Solid drug gradually
depletes as it dissolves, diffuses and crosses over the skin boundary. The
available dissolved drug in the marix at the skin boundary decreases as
the closest solid drug recedes.

Concentration profiles through the skin for both systems are shown
in Fig. 16. In both cases we can observe an increase of drug levels in the
skin at the DC - Skin and Matrix - Skin boundaries. In Table 5, we can
see that the ratio of concentration difference between DC - Skin layers
gradually increases with a Kα value similar to that presented in
Section 3.1. In Matrix - Skin case however, the ratio is already close to
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Fig. 12. Concentration profiles within skin layer at different times. Top: bound phase
profiles. Bottom: Unbound phase profiles.

Table 4
Percentage of the two drug mass phases retained in each layer at different times.

=k 0.36,α1, =k 0.36,α2, =k 0.36β1, and =k 0.36β2, (1/h). μe, μ0, μ1 and μb (%) refer to
bound vehicle, unbound vehicle, unbound skin and bound skin drug mass retained, re-
spectively.

t (h:m:s) μe μ0 μ1 μb

00:23:49 87.50 10.57 01.84 00.09
01:59:03 57.29 19.95 18.04 04.72
19:50:29 03.92 03.06 34.98 36.62

Table 3
Parameter values used for simulation of vehicle-skin system. Top: parameters within
layers. Bottom: interlayer parameters.

Layer H (cm) D (cm2/h) k1 (1/h) k2 (1/h)

Vehicle 0.2 −9.3·10 3 0.36 0.36
Skin −5.0·10 4 −1.3·10 8 0.36 0.54

Boundary K (cm/h)

Vehicle - Skin −3.6·10 3

Skin - Capillary 10.8
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its Pα value after 1/4 h and becomes closer thereafter, in part due to the
relatively high Kα value. The varying shape of the dissolved drug con-
centration profile within the matrix at the skin boundary also plays a
role.

Donor chamber concentration change with respect to time can be
seen in Fig. 17 and is held spatially the same with high D value.

The partition value between matrix and skin is more than 2 times
higher and the value between donor and skin more than 50 times
higher than in [9] where there was a much greater discrepancy be-
tween these two values. The corresponding mass transfer values are

effectively “infinite” in [9] and thus considerably lower in the pre-
sent simulations, especially between donor and skin. This could re-
flect the drug resistance of the epidermis, in particular that of the
stratum corneum. The resulting fit is similar to that of [9] for the
matrix-skin system but significantly better for the donor-skin system,
indicating the importance of including both partition effects and
mass transfer or barrier effects.

Fig. 13. Top: a schematic model of Matrix-Skin experimental system. Bottom: a schematic model of DC-Skin experimental system.
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Fig. 14. Top: simulated RC curves compared with data of both systems. Curves and data
have been normalized w.r.t. highest data value. Bottom: Simulated DC curve of DC-Skin
system. The vertical bars show the range of measured values in the experiments that were
repeated four times. The circles show the average value from these four experiments.
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Fig. 15. Concentration profiles in silicone matrix near the skin boundary for Matrix-Skin
system. Top: solid drug profiles. Bottom: Dissolved drug profiles.
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Table 5
Computed discontinuity of respective systems, at Matrix-Skin and DC-Skin boundaries,
given as ratio Cβ/Cα at different times.

1/4 h 1 h 5 h 50 h

Matrix-Skin 1030 1040 1046 1049
DC-Skin 2 5 11 54

Table 6
Parameter values used for the simulation of release curves in both transdermal FDC ex-
periments, see appropriate model schematic in Fig. 13. Top: Parameters values within
layers. Bottom: Interlayer parameter values.

Layer D (cm2/h) k′ (cm3/mg h) cs (mg/ml)

Skin −9.3·10 5

Matrix −9.3·10 3 5.0 · 101 −1.1·10 2

DC 1.0 · 105

RC 1.0 · 105

Boundary P ( − ) K (cm/h)

Skin / Matrix 1050 −8.0·10 1

Skin / Donor 450 −8.8·10 5

Skin / PBS 70 −1.8·10 2
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Fig. 17. Simulated DC curve of DC-Skin system.
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Fig. 16. Concentration profiles in skin layer. Top: Dissolved drug profiles in Matrix-Skin
system. Bottom: dissolved drug profiles in DC-Skin system.

Data: ck, sk, Ac, As, lc, ls, M̄, θ, max, tol
Result: ck+1, sk+1 and updated values for Ac, As, lc, ls

k = 1; ε = 2 tol;
Solve M̄s̃0 = M̄sk + Δt (Assk − ls); while k < max and ε > tol do

Ãc = Ac updated w.r.t s̃0; l̃c = lc updated w.r.t s̃0; Solve [M̄ − θΔt Ãc]ck+1 = M̄ck + (1 − θ)Δt(Acck − lc) − θΔt l̃c; Ãc = As

updated w.r.t ck+1; l̃s = ls updated w.r.t ck+1;
Solve [M̄ − θΔt Ãs]s̃1 = M̄sk + (1 − θ)Δt(Assk − ls) − θΔt l̃s; ε = ‖s̃1 − s̃0‖; s̃0 = s̃1; k + +;

end
sk+1 = s̃1; Ac = Ãc, lc = l̃c, As = Ãs, ls = l̃s.

Algorithm 1. One-step time evolution algorithm.
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4. Discussion and conclusions

A numerical method was introduced to incorporate the dis-
continuous interlayer boundary effects of partitioning and mass transfer
into the finite element scheme. The usefulness and flexibility of the
framework was demonstrated with a series of models highlighting
particular applications.

In 3.1, we managed to explain three release curves, corresponding
to different thicknesses of IOLs, with a single set of parameter values
which proved impossible without the combined effects of the parti-
tioning and mass transfer parameters. The low mass transfer parameter
value obtained in this case indicates possible surface effects which
impede drug penetration and explains the lack of drug penetration for
the thickest lens. In 3.2, we compared our results with those of Pontrelli
and Monte when the secondary state is described by a two-phase
equation. In 3.3, we looked at previously published data with an ex-
tended model including additional mass transfer parameters in order to
describe a system previously modelled in [9] when the secondary state
is described by a Noyes–Whitney equation. The added mass transfer
parameter reflects the natural drug resistance of the skin sublayers, and
improves the resulting fit.

In general published data on drug release does not describe con-
centration profiles thoughout the material, which limits the scope of
testing the reliability of proposed models. A notable exception however
can be found in [7] where a cornea is studied with the fluorescent
compound rhodamine and trans-corneal concentration profiles of the
compound can be directly assessed and modelled. It is of interest to note
that both partition effects and mass transfer effects had to be included
to simulate the measured concentration profiles.

As suggested by [21,22], mass transfer conditions, sometimes re-
fered to as Kedem–Katchalsky conditions, can be used to model parti-
tioning effects. In particular, the conditions can be used to model a
control barrier with partition, as described in 2.2, in the case when

=− +P P 1. In more general settings however, this approach does have its
limitations. Firstly, mass transfer discontinuities arise only when there
is a flux. This means that for a system in equilibrium, naturally occuring
jumps in concentration cannot be adequately modelled. Secondly, mass
transfer conditions can only describe negative jumps in the direction of
the flux. In some cases however, a positive jump can occur as in 3.1 and
3.3 see also e.g. [7,23].
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