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Transdermal drug delivery is an attractive alternative to conventional techniques for administration of
systemic therapeutics. One challenge in designing transdermal drug delivery systems is to overcome the
natural transport barrier of the skin. Chemicals offer tremendous potential in overcoming the skin barrier to
enhance transport of drug molecules. Individual chemicals are however limited in their efficacy in disrupting
the skin barrier at low concentrations and usually cause skin irritation at high concentrations.Multicomponent
mixtures of chemicals, however, have been shown to provide high skin permeabilization potency as compared
to individual chemicals without necessarily causing irritation. Here we review systems employing synergistic
mixtures of chemicals that offer superior skin permeation enhancement. These synergistic systems include
solvent mixtures, microemulsions, eutectic mixtures, complex self-assembled vesicles and inclusion
complexes. Methods for design and discovery of such synergistic systems are also discussed.
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1. Introduction

Injections, pills and to some extent topical and mucosal formula-
tions comprise the most commonly used drug delivery methods. Oral
delivery is by far the easiest and most convenient way of delivering
drugs especially when repeated or routine administration is required
[1]. This advantage, however, is offset for protein and peptide-based
drugs sensitive to enzymatic degradation in the gastro-intestinal tract.
Drugs based on proteins and peptides now form a significant fraction
of the therapeutic spectrum, primarily due to accelerated advances in
understanding protein chemistry and drug interactions. Currently,
needle-based injection is the most frequently used route to
administer protein and peptide drugs. Despite their common use,
needle-based drug administrations have several limitations. Needle
phobia is a significant issue in adults and children alike [2] and makes
drug administration stressful [3]. Accidental needle sticks also add to
the limitations of needle use in developed and developing countries
alike [4,5]. Further, hepatic metabolism results in rapid clearance of
drugs from the blood making repeated administration inevitable. This
only aggravates the problem of needle pain especially for patients
requiring multiple administrations on a daily basis. The next era of
health care will demand more accommodating delivery systems for
sensitive drug classes. Patient compliant, noninvasive and sustained
delivery will become the key feature desirable of any drug delivery
system. Several advances to this effect have been made in the last 2–3
decades and novel drug delivery systems have been brought to the
forefront [6–8]. A large contribution to these novel systems appeared
as modifications of the active drug or use of formulation excepients to
modulate drug pharmacokinetics, safety, efficacy and metabolism. A
more radical approach has been to explore newer interfaces on the
body for introducing therapeutics. One such approach, transdermal
drug delivery, makes use of human skin as a port of entry for systemic
delivery of drug molecules [9–14].

Transdermal drug delivery (TDD) offers an advantageous mode of
drug administration by eliminating first pass hepatic metabolism and
providing sustained drug release for a prolonged period of time. It is
painless when compared to needles and therefore offers superior
patient compatibility. However, skin is the first line of defense of an
organism and the last barrier separating the organism from its
hostile environment of viruses, pathogens and toxics. Evolved to
impede the flux of exogenous molecules into the body, skin naturally
offers a very low permeability to the movement of foreign molecules
across it. A unique hierarchical structure of lipid-rich matrix with
embedded keratinocytes in the upper strata (15 μm) of skin, stratum
corneum (SC), is responsible for this barrier [15]. In addition to its
role as a barrier, both physical and biological, skin performs a
complimentary role; that of a transport regulator. Skin routinely
regulates the flux of water molecules into and out of the body. It also
permits the influx of a variety of small molecules that are fairly
lipophilic (log PN1.5) and have molecular weight less than 500 Da
[16]. As a result, there has been a natural bias in design of
transdermal delivery systems to take advantage of therapeutics
that meet these requirements. Drug molecules currently adminis-
tered via the transdermal route fall within a narrow range of
molecular weight and lipophilicity. They are typically characterized
by high Log P (N1.5) and low MW (b500 Da), thereby taking
advantage of the natural selectivity of the skin membrane. A large
fraction of drug molecules such as protein and peptide-based drugs
lie outside these bounds. The biggest challenge in transdermal drug
delivery today is to open the skin safely and reversibly to these high
molecular weight hydrophilic drugs.

Several technological advances have been made in the past couple
of decades to overcome this challenge. These advances can be broadly
divided into two categories; physical methods and chemical methods.
Physical methods employed for increasing transport of drug mole-
cules across the skin use some form of mechanical, electrical,
magnetic or thermal energy source to promote transport of macro-
molecules by disrupting the skin membrane. Examples of physical
approaches include the use of microneedle array [17–22], ballistic
liquid jet [23–25], high velocity particles [26], ultrasound [27–32],
electric current [33–39], abrasion [17,40], ablation [41,42], lasers
[40,43,44], pressure waves [45–47], radiofrequency thermal ablation
[48], magnetophoresis of diamagnetic solutes [49,50] and thermo-
phoresis [51–55]. Several excellent reviews discuss the advantages,
limitations and opportunities offered by these approaches in greater
details and thus will not be covered in this review.

2. Chemical methods for permeation enhancement

2.1. Chemical permeation enhancers

Several chemicals are known to interact with the skin and disrupt
the highly ordered lipid bilayer structure that forms the primary
barrier to diffusion of exogenous molecules. This observation led to
the study of chemical agents to enhance transport across skin. More
than 300 chemicals, termed permeation enhancers or penetration
enhancers, have been studied for their ability to increase transport of
drug molecules across the skin. Permeation enhancers currently
represent the most widely studied approach to transdermal drug
permeation enhancement on account of the advantages they offer
over physical methods. Chemical permeation enhancers are relatively
inexpensive and easy to formulate, they offer flexibility in their
design, are simple in application and allow the freedom of self-
administration to the patient. Finally, chemical enhancers can be
formulated with the active therapeutic as a topical cream or gel, or an
adhesive skin patch that can be applied anywhere on the body for
prolonged systemic delivery of the drug. In general, permeation
enhancers may contain a wide variety of different chemical
functional groups and act by a variety of different mechanisms in
enhancing drug transport. In this review we use the term ‘chemical
enhancers' to include a broad range of chemicals (discussed in
Section 3) as well as more complex systems arising from combining
individual chemicals (with or without the active therapeutic) such as
vesicles, colloids, microemulsions, eutectic mixtures and inclusion
complexes (discussed in Section 5). Chemical enhancers can also
exhibit a wide range of excepient effects in addition to their primary
function of participating in skin permeabilization. These may include,
but are not limited to, improving drug solubility, improving aesthetic
traits such as odor, color and texture, and acting as emulsifiers,
preservatives and fillers. For the purpose of this review we focus on
the primary role of chemical enhancers as skin permeabilizing
agents.
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2.2. Mechanism of action of chemical permeation enhancers

Permeation enhancers enhance transport of drugs across skin by a
variety of complexmechanisms. They can directly exert their effect on
skin structure by acting on intercellular lipids or corneocytes, the dead
cells of the stratum corneum. Permeation enhancers can be divided
broadly in two categories based on their action on intercellular lipids
of the skin [56]. Chemical enhancers can either extract lipids from the
skin thereby creating diffusion pathways for the drug to permeate
through or they can partition themselves into the lipid bilayers
thereby disrupting the highly ordered lipid lamellae and causing their
fluidization [56–58]. Lipid extraction or fluidization in presence of
chemical enhancers could occur through a variety of different
mechanisms [57]. Alternately, chemical enhancers can increase skin
transport of a drug by enhancing its thermodynamic activity in the
formulation, for e.g., by causing supersaturation of the drug in the
formulation. The modes of action of various penetration enhancers
and some scientific perspectives have been extensively discussed in
prior literature [59,60]. Additionally, discussion on individual enhan-
cers below is annotated with relevant references on their mechanism
of action.

3. Categories of chemical permeation enhancers

Chemical permeation enhancers have traditionally been classified
based on their chemical structures rather than their mechanisms of
action on skin. Such a classification is purely out of practical benefits
since permeation enhancers can act on skin by a variety of different
mechanisms which may not always be straightforward to elucidate.
Chemicals belonging to the same group can act on skin by different
mechanisms depending on their individual physico-chemical prop-
erties. Below, we briefly discuss the most widely accepted grouping of
permeation enhancers based on their chemical structures.

3.1. Water

Water is the most natural penetration enhancer [61]. Hydration
state of the stratum corneum is important in determining penetration
enhancement of a given drug. Usually, increased hydration of the
stratum corneum enhances transdermal flux of a variety of drugs. The
role of water in promoting transdermal delivery has been extensively
reviewed elsewhere [61].

3.2. Hydrocarbons

Several hydrocarbons including alkanes, alkenes, halogenated
alkanes, squalane, squalene and mineral oil have been used as
vehicles or penetration enhancers to increase permeation of a variety
of drugs across the skin [62]. These permeation enhancers generally
work by partitioning into the stratum corneum and disrupting the
ordered lipid bilayer structure. In a series of experiments on skin
permeation using alkanes of varying chain length (9–18 atoms), it was
demonstrated that alkanes with 9–10 carbon atoms showed highest
skin permeation enhancement of propranolol and diazepam while
shorter alkanes (5–6 carbon atoms) showed highest permeation
enhancement of caffeine [62,63]. Squalane and squalene improved
permeation of sodium diclofenac; mineral oil was effective for methyl
nicotinate and chlorododecane enhanced permeation of timolol
maleate [64]. Several other hydrocarbons and their effect on skin
permeation of a variety of drugs are reviewed in Buyuktimkin et al.
[60].

3.3. Alcohols

Alcohols are frequently used as vehicles, solvents or penetration
enhancers in improving transdermal delivery of drugs. These include
alkanols, alkenols, glycols, polyglycols and glycerols. Alcohols can
enhance skin permeation by a variety of mechanisms such as
extraction of lipids and proteins, swelling of the stratum corneum
or improving drug partitioning into the skin or solubility of the drug in
the formulation [60,65–69].

3.4. Acids

The most commonly studied chemicals in this category are fatty
acids [59,66–68]. These chemicals enhance transport of drug
molecules across the skin by a variety of mechanisms such as
partitioning into the lipid bilayers and disrupting their ordered
domains, improving drug partitioning into the stratum corneum and
forming lipophilic complexes with drugs [70,71]. Acids are typically
used as solvents or vehicles but can also be used as permeation
enhancers in a solvent or vehicle system [60]. Oleic acid is an example
in this category that is extensively studied as a permeation enhancer
[72–74].

3.5. Amines

Primary, secondary and tertiary, cyclic and acyclic amines have
been used successfully in enhancing skin permeation of a variety of
drugs. Amines may enhance skin permeation by partitioning into the
lipid bilayers or improving drug partitioning into the skin [56,60,68].

3.6. Amides

Cyclic and acyclic amides form another large class of chemicals
studied as permeation enhancers [60]. Azone, the first synthetic
permeation enhancer and its analogues along with pyrrolidones are
the most extensively studied amides [75,76]. Typically, amides are
used as solvents and can act by enhancing the activity of the drug in
the solvent or improving drug partitioning in the skin. Urea and its
analogues, which fall under this category, are usually used as
permeation enhancers in solvents where they can have different
effect on the skin based on the solvent system chosen, but generally
act by disrupting the skin lipids [77,78].

3.7. Esters

Esters of fatty acids have been used in several studies and show
skin permeation enhancement of a wide variety of drugs
[56,60,68,79]. Isopropyl myristate is the most widely studied ester
along with several other esters of fatty acids. These chemicals
generally work by partitioning themselves in the ordered lipid
domains of the stratum corneum [60,65].

3.8. Surfactants

A wide variety of surfactants have been actively pursued as skin
permeation enhancers [60,80,81]. These include anionic, cationic,
zwitterionic and non-ionic surfactants. Surfactants are usually used
with a vehicle or solvent system and their activity depends upon the
hydrophilic to lipophilic balance, charge and lipid tail length [56].
Anionic and non-ionic surfactants are relatively more widely studied
compared to others within this category [82,83].

3.9. Terpenes, terpenoids and essential oils

Terpenes are a popular choice for permeation enhancers in
transdermal drug delivery studies [84–86]. This category includes a
heterogeneous range of members and the effect of a specific terpene
on skin depends upon its exact physicochemical properties, in
particular its lipophilicity. In general, smaller terpenes with non
polar groups are better skin permeation enhancers [60].
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3.10. Sulfoxides

Dimethyl sulfoxide was the first chemical to be studied in depth as
a permeation enhancer. It was originally used as a solvent to improve
drug partitioning into the skin; however several studies have reported
the use of dimethyl sulfoxide and its derivatives as enhancers in other
solvent systems [60,66,68].

3.11. Lipids

Phospholipids have been successfully used as permeation enhan-
cers in the form of vesicles, microemulsions and micellar systems
[87,88]. Phospholipids do not have an appreciable effect when
interacting with the stratum corneum as individual molecules.
However, in the form of self-assembled structures such as vesicles
or micelles, they can fuse with the lipid bilayers of the stratum
corneum thereby enhancing partitioning of encapsulated drug as well
as disruption of the ordered bilayers structure [60,66].

3.12. Miscellaneous

In addition to the classical chemical permeation enhancers
discussed above several other chemical groups have been studied
for their ability to enhance drug transport across the skin. Cyclic
oligosaccharides such as cyclodextrins form inclusion complexes with
a variety of hydrophobic drugs thereby increasing their partitioning
and solubility in the stratum corneum [89–97]. Amino acids and
thioacyl derivatives of amino acids have been shown to enhance
transdermal permeation of drugs. Alkyl amino esters and oxazolidi-
nones have also been used successfully as permeation enhancers [60].
Enzymes are a relatively new class of chemicals studied as permeation
enhancers. Papain and medicinal leech enzymes have been shown to
successfully enhance the transdermal delivery of drugs [60,98].
Ketones have been shown in some studies to enhance skin
permeation of steroidal drugs. In general, macrocyclic ketones with
12 carbon atoms or more have also been successful in enhancing
transdermal delivery of a wide variety of drugs [60]. Finally, metabolic
intervention schemes that affect the synthesis of the stratum corneum
components and hence its homeostasis have also been proposed for
skin permeation enhancement [66].

4. Limitations of chemical permeation enhancers

4.1. Efficacy

An important limitation of chemical enhancers is that most of the
enhancers that have been studied in the transdermal literature for
their ability to increase transport across skin donot achieve the desired
skin disruption [81]. They show poor permeation across the stratum
corneum themselves and hence their activity is limited to the top few
layers of the stratum corneum. As their concentration across the
stratum corneum decreases, so do their activities. As a result, these
chemicals offer poor transdermal delivery of candidate drug mole-
cules. In general, chemical enhancers disrupt skin by a variety of
different mechanisms. Several investigators have attempted to
identify the physicochemical forces that determine the activity of the
permeation enhancers in skin [99–103]. Correlating physicochemical
parameters such as charge, hydrogen bonding ability, polar forces,
partition coefficient, solubility, etc. allows one to develop quantitative
structure activity correlations (QSAR) that relate chemical structure of
the permeation enhancer to its skin disrupting potential. Based on
such relations, one can design new permeation enhancers that are
significantly more potent in their skin permeabilizing ability as com-
pared to conventional chemicals. Azone (1-dodecylazacycloheptan-2-
one) and SEPA (2-n-nonyl-1,3dioxolane) are examples of such
“synthetic” permeation enhancers that have been designed through
knowledge of molecular properties relevant for skin permeabilization
[104]. We have used quantitative correlations to design potent
enhancers that work as lipid extractors or lipid fluidizers using
partition coefficient, hydrogen bonding, polar and dispersion forces
[56]. Specifically, we found that it is fundamentally impossible to
design lipid extracting permeation enhancers that are both potent and
safe since similar molecular properties are responsible for lipid
extraction as well as protein denaturation which is related to skin
irritation. Permeation enhancers with a very high partition coefficient
were found towork as potent lipidfluidizers but their poor solubility in
aqueous formulations limits their practical use [56].

4.2. Safety

Yet another challenge in using chemicals in enhancing transder-
mal transport is their potential to cause skin irritation. In general, the
potency of penetration enhancers in causing skin irritation scales
proportionally with their ability to cause skin disruption [56]. The
term irritation is used to describe any adverse effects caused by
interaction of chemicals with skin constituents and may include local
inflammation, erythema, swelling, dermatitis or other deleterious
reactions. This general limitation of chemical enhancers stems from
their mechanism of action on skin. Potent permeation enhancers are
very good at disrupting the corneocytes or highly ordered lipid
bilayers of the stratum corneum. The stratum corneum represents the
largest transport barrier to diffusion of drug molecules but is
physiologically dead. Potent permeation enhancers while good at
disrupting the stratum corneum cannot limit their activity to this
superficial layer and eventually diffuse into the viable epidermis that
is directly below the stratum corneum. In the viable epidermis, the
penetration enhancers can interact with the keratinocytes, the living
cells of the epidermis, and cause cytotoxicity. It is challenging to
design permeation enhancers that exert their effect exclusively in the
stratum corneum. As a result it is challenging to strike an optimum
balance between the safety and potency of chemical enhancers [56].

4.3. Opportunities offered by chemical mixtures

Chemical mixtures offer several opportunities to overcome the
limitations of single chemical enhancers. Mixtures of chemicals can
offer superior potency as compared to single chemicals through a variety
of different ways. Individual components of a mixture can cause skin
disruption through similar or complementary mechanisms thereby
resulting in additive or synergistic effects on permeation enhancement.
For example, a combination of two chemical enhancers, one ofwhich acts
on lipids and the other on corneocytes can open up intercellular
hydrophobic aswell as intracellular hydrophilic pathways for permeation
of a drug molecule. Similarly, one component of a mixture can increase
the partitioning of drug molecule in the stratum corneum whereas the
other component can create diffusion pathways by disrupting the lipid
bilayers or corneocytes. Yet another example in which enhancers can
showadditive or synergistic behavior iswhenone enhancer stabilizes the
drug or prevents it from metabolism in the skin and the other enhancer
creates diffusion pathways for permeation of the drug.

Beyond exhibiting synergistic effects in improving drug transport,
mixtures of chemicals can also show a synergy between potency and
safety [81]. One way to design chemical permeation enhancers that are
both safe and potent is to decouple their activities in the stratum
corneum and the epidermis. High potency requires the permeation
enhancers to have a very high disruptive activity in the stratum corneum
whereas safety demands that the permeation enhancers have little to no
activity in the viable epidermis. Achieving such a decoupling of
mechanisms for individual chemicals diffusing through the skin is
extremely difficult if not impossible. However, combinations of chemicals
offer a unique opportunity in achieving such a decoupling. A mixture of
chemicals can be designed such that it has a very high cell and lipid
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bilayer disrupting activity in the dead stratum corneum. As the
components of this mixture diffuse across the stratum corneum into
the epidermis, the composition as well as concentration of the mixture
changes due to difference in the partition coefficients as well as diffusion
rates of the two components from the stratum corneum into the
epidermis. The resulting mixture in the epidermis can be expected to be
safe if it has a very low disruption potential. It is thus theoretically
possible to design a combination to show one concentration and
composition in the stratum corneum while a completely different
concentration and composition in the epidermis. Since activity of the
mixture is related to the concentration and composition of its
components, the activities of the mixture in the two layers of the skin
can be decoupled. A formulation can thus be designed to have a very high
disruption potential in the stratum corneummaking it potent and a very
low disruption potential in the epidermis thereby making it safe [81].

5. Synergistic mixtures of chemical permeation enhancers

5.1. Synergy

A number of studies have shown that certain chemicals in a
mixture interact synergistically and induce skin permeation enhance-
ments higher than that induced by the individual components
[68,79,81]. Synergies between chemicals can be exploited to design
potent permeation enhancers that overcome the efficacy limitations
of single enhancers. Synergy can be quantified objectively by a
mathematical parameter, S, indicative of the “extent of interaction”
between the two penetration enhancers, as the ratio of permeation
enhancement obtained by the mixture to the weighted sum average
of the permeation enhancements obtained from the individual
components of the mixture as follows [81]:

S =
E X;Y

A+ B

X:EYA + 1− Xð Þ:EYB
:

EA+B
X,Y is the enhancement ratio obtained with a formulation

containing two permeation enhancers A and B at a total concentration
of Y% wt/vol and X weight fraction of A. EA

Y and EB
Y are the

enhancement ratios obtained with pure components A and B
respectively at the same total concentration Y. Alternately, synergy
may be defined with respect to the permeation enhancement
obtained from either of the individual components of the mixture.
Based on experimental studies on 5000 different chemical enhancer
mixtures, we have previously reported that the enhancement induced
by formulations is related to synergistic interactions between
chemical enhancers [105]. Synergy, S, can assume a value greater
than 1, indicating positive synergy and superior skin permeabiliza-
tion, a value of 1 indicating no synergy or no change in permeabiliza-
tion potential due to mixing of individual enhancers and a value less
than 1 indicating negative synergy or reduction of skin permeabiliza-
tion potential on mixing of individual enhancers.

While mixtures with SN1 have clear applications for transdermal
drug delivery, formulations with Sb1 imply reduced interaction with
skin. Such formulations have important roles in therapeutic or
cosmetic formulations. Skin barrier reduction and sensitization are
undesired results of several personal care formulations such as
sunscreens, fragrances and cleansers. Such formulations can be
potentially designed to have S≤1 to improve their safety.

This reviewwill focus only on chemical mixtures that have SN1 for
applications in transdermal drug delivery.

5.2. Types of synergistic chemical mixtures

Chemical mixtures can induce skin permeation enhancement by a
variety of complexmechanisms that are not always straightforward to
elucidate. A simple way to classify synergistic mixtures is based on the
way these mixtures are formulated from their individual components.
In some cases, for example vesicles, the individual chemicals in the
mixture may self-assemble to form well-defined complex secondary
structures that permeabilize the skin. Alternately, the chemicals may
individually exert their effect on the skin structure. Below we review
several different types of chemical mixtures that have been used to
enhance skin permeability to a wide range of drugs.

5.2.1. Solvent mixtures
Many classical permeation enhancers include solvents such as

water, fatty acids, alcohols, glycols and fatty esters used in their
pure state. A mixture of two or more solvents is one of the most
widely studied formulation strategies to facilitate drug transport
across the skin. The mechanisms by which such systems increase
transdermal flux may include: (a) change in the thermodynamic
activity (e.g., by increasing the degree of saturation in the solvent
and, hence, increasing the escaping tendency) or (b) specific
interaction with the stratum corneum, either by increasing the
drug solubility in the stratum corneum (i.e., facilitate partitioning of
drug from the vehicle into the skin) or by altering the various
transport pathways (i.e., the polar and nonpolar pathways) in the
stratum corneum [79,106].

Propylene glycol has been studied extensively as a co-solvent in
numerous studies [79]. Several reports have documented the
synergistic enhancements obtained from a mixture of propylene
glycol with fatty acids [107,108], alcohols [108] and esters of fatty
acids or alcohols [109,110]. Rhee et al. [111] observed that the skin
permeability of clebopride from a binary mixture of diethylene glycol
monoethyl ether:isopropyl myristate (40:60) was 80-fold higher as
compared to that from isopropyl myristate alone. Krishnaiah et al.
[112] studied the effect of various water:ethanol solutions on skin
permeation of ondansetron hydrochloride and found that a synergis-
tic mixture of 60% v/v ethanol:water showed highest skin permeation
in vitro. Panchagnula et al. [113] studied binary combinations of water,
ethanol and propylene glycol for their ability to enhance transdermal
permeation enhancement of naloxone and found that well above
therapeutically relevant concentrations of naloxone could be obtained
by a mixture of propylene glycol:ethanol (33:67). A solvent
combination of isopropyl myristate:glyceryl monocaprylate (90:10)
showed synergistic enhancement in permeation of pentazocine
where the flux obtained from the combined solvent system was 4-
fold higher as compared to isopropyl myristate alone [114].
Transdermal flux of highly lipophilic drugs such as antiestrogens,
can be enhanced extraordinarily by using a solvent combination of
propylene glycol:lauric acid (90:10) [115]. The extraordinary perme-
ation enhancement by this formulation is due to mutual permeation
enhancement of these two enhancers and their synergistic lipid-
fluidizing activity in the stratum corneum. Binary combinations of
isopropyl myristate and short chain alkanols show transdermal flux
enhancement of estradiol when compared to alkanols alone [116]. A
1:1 combination of isopropyl alcohol and isopropyl myristate
improved estradiol flux by 35-fold when compared to aqueous
formulations. Permeation of tegafur across excised hairless mouse
skin was significantly enhanced by a binary combination of ethanol:
tricaprylin (40:60) [117]. A binary combination of isopropyl
myristate:n-methyl pyrrolidone (25:75) significantly improved lido-
caine flux across human skin showing an enhancement of 25-fold
over 100% isopropyl myristate and 4-fold over 100% n-methyl
pyrrolidone [118]. Menthol:n-methyl pyrrolidone and isopropyl
myristate:n-methyl pyrrolidone mixed solvent systems have also
been documented to show synergistic enhancement of transdermal
delivery of formoterol fumarate [119]. A binary system of triethylene
glycol monomethyl ether:isopropyl palmitate can improve estradiol
delivery by 60-fold when compared to the individual components
[120].
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The skin permeation enhancement of binary solvent mixtures can
be further improved by including a third component in the mixture.
For example, the permeation enhancement of estradiol and acyclovir
from a ternary mixture of oleic acid, lauroylcholine and propylene
glycol was much greater than the sum of the corresponding binary
mixtures [107]. Fang et al. [121] studied the effect of a ternary solvent
system of triethanolamine, ethanol and isopropyl myristate (IPM) on
the skin permeation of acidic, basic and neutral drugs in vitro using
excised hairless rat skin. The binary enhancer system consisting of
isopropyl myristate and ethanol produced marked improvement on
the penetration of all the drugs tested. When triethanol amine was
added to the binary system, a greater enhancing effect was found on
acidic drugs. On addition of another amine, mefenamic acid to the
binary system of ethanol and isopropyl myristate, the flux improved
approximately 14–180 fold. A judiciously selected ternary solvent
system of propylene glycol, cis-oleic acid and dimethyl isosorbide was
also proved effective in improving the flux of nifepidine across
hairless mouse skin [122].

5.2.2. Mixtures of permeation enhancers in a vehicle
Using permeation enhancers at high concentrations in the form of

solvents provides the opportunity to exert strong effects on skin
structure, thereby improving the transdermal flux of drug molecules.
While such systems may have particular benefits for certain drugs
that show poor solubility in aqueous formulations, they can cause
safety concerns due to the irritation induced in deeper, living layers of
the skin. High levels of very potent solvents may have drastic effects
on skin. They may damage desmosomes and protein-like bridges,
leading to fissuring of the intercellular lipid and splitting of the
stratum corneum squames. Solvents may also enter the corneocyte,
drastically disrupting the keratin and even forming vacuoles [106].
Also, solvents or solvent mixtures are practically difficult to employ in
transdermal patches or topical formulations. Instead chemical
permeation enhancers can be formulated in a vehicle that could be
a passive co-solvent, cream or gel base. In such systems the
contribution of the vehicle to skin permeabilization is usually very
small or negligible.

A large number of studies have now accumulated that convinc-
ingly point to superior permeation potential of permeation enhancer
mixtures as compared to individual chemicals. Examples exist on
permeation enhancer combinations between chemicals belonging to
different groups or from within the same group [60,67,68,79]. The
combination of cineole and oleic acid synergistically enhanced
transdermal flux of zidovudine across rat skin [123]. The combination
of two ester derivatives, dibutyl adipate and isopropyl myristate
shows a synergetic effect of increased transdermal delivery [60]. N-(2-
mercaptopropionyl) glycine enhances delivery of prazosin in pres-
ence of some esters and alcohols [60]. Aqueous solutions of n-lauroyl
sarcosine and ethanol enhanced the flux of fluorescein across human
cadaver skin by 47-fold [58]. Menthol and ethanol work synergisti-
cally to significantly enhance the flux of tetracaine across mouse skin
in vitro and showed the shortest anesthesia onset time, the longest
anesthesia duration and the strongest anesthesia efficacy in human
volunteer studies [124]. The in vitro permeation rate of dapiprazole
base (DAP-B) through hairless mouse skin was significantly enhanced
by a mixture of linoleic, linolenic and arachidonic acid [125]. The in
vitro skin delivery of furosemide was significantly improved by using
a combination of oleyl alcohol and azone as permeation enhancers
[126]. Combination of azone and propylene glycol was able to increase
clonazepam and lorazepam percutaneous fluxes through excised
human skin [127]. In the past we have undertaken several studies on
exploring synergistic behavior of chemical mixtures in increasing skin
permeability [80,81,105,128]. Combination of an anionic surfactant,
sodium lauryl sulfate, and a cationic surfactant, dodecyl pyridinium
chloride, was 2- to 3-fold better as compared to individual surfactants
alone in increasing skin electrical conductivity—a measure of skin
permeability [128]. Similarly, a combination of sodium laureth sulfate
and phenyl piperazine was 4- to 6-fold more potent in increasing skin
permeability as compared to the individual components alone [81].
This combination was effective in increasing the in vitro skin
permeability of drug candidates such as methotrexate, low molecular
weight heparin, leutinizing hormone releasing hormone (LHRH) and
oligonucleotides [81]. Another combination, sodium lauroyl sarcosi-
nate and span 20 was capable of delivering therapeutically significant
doses of leuprolide acetate, a synthetic analogue of LHRH in vivo in a
rat model [81].

5.2.3. Eutectic mixtures
Solid drugs transformed into a highly concentrated oily state at

ambient temperatures exhibit increased skin permeability due to
their high thermodynamic activity in the vehicle [129,130]. Melting
point of a drug is inversely proportional to its lipophilicity and
solubility in skin lipids. As a consequence, lowering the melting point
results in increased transdermal permeation [131]. Several eutectic
systems of active drug along with a skin permeation enhancer have
been studied in the literature. These systems are interesting since they
provide two mechanisms by which skin permeation of an active drug
across skin can be enhanced. In the first, they form a low melting
mixture with the drug thereby improving its partitioning into the
skin. In the second, they act on skin directly to disrupt its structure
and further enhance drug permeation. This synergy in mechanism can
be exploited by selecting the right permeation enhancer or enhancers
to be combined with the drug. Eutectic systems of ibuprofen formed
with terpenes and propranolol with fatty acids have been studied
successfully for improved transdermal permeation of drugs [132,133].
Kang et al. showed that the lidocaine:menthol eutectic system
enhanced permeation of lidocaine across shed snake skin [134].
Kaplun-Frischoff and Touitou [135] showed enhanced permeation of
testosterone across human cadaver skin when combined with
menthol in a eutectic formulation.

5.2.4. Vesicles
Vesicles are colloidal particles that are composed of concentric

bilayers formed from self-assembly of amphiphilic molecules.
Vesicles have gained prominence as skin permeation enhancing
agents as well as drug carrier agents in transdermal drug delivery
[87,88]. Depending on the molecules or group of molecules that
constitute the vesicles, they can be grouped in several different
categories. The composition of the vesicles influences their physico-
chemical characteristics such as, size, charge, thermodynamic phase,
lamellarity and bilayer elasticity [136]. These physico-chemical
characteristics in turn have a profound effect on the behavior of
the vesicles and hence on their effectiveness in enhancing transder-
mal drug delivery [137–151]. Several mechanisms mediating the
vesicle–skin interactions have been proposed in the literature. These
interactions can putatively occur either at the skin surface or in the
deeper layers of the stratum corneum depending upon the elasticity
or deformability of the vesicles [152–158]. Synergistic interactions
between the components of the vesicles and between the vesicles
and skin constituents are believed to be responsible for the superior
skin permeation enhancement of vesicular systems [159,160]. It is
quite likely that the plurality of multicomponent vesicle systems
interact with the stratum corneum via very similar mechanisms. We
have therefore classified these mixed chemicals systems based on
their constituents rather than mechanisms of interaction with the
skin.

Several different kinds of vesicles have been described in the
literature. Liposomes consist of lipids such as cholesterol and phos-
pholipids and typically work by encapsulating drugs in their core and
increasing their deposition in the stratum corneum [141,161–163].
Mezei and Gulasekharam [164] showed that triamcinolone acetonide
concentrations in skin were observed to be 4- to 5-fold higher when
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delivered from liposomes as compared to conventional formulations.
Similar observations were made for progesterone and econazole.
Several other studies have corroborated these findings of improved
skin deposition of drugs from liposomes [165–168]. Dermal delivery
with skin-lipid liposomes was shown to be more effective than
deliverywith phospholipid vesicles. One limitation of liposomes is that
they are ineffective in delivering drugs to deeper layers of skin [169],
however some studies have claimed that these particles are indeed
transported across the skin [146,170].

Niosomes are composed of non-ionic amphiphiles (surfactants)
and are similar in function to the liposomes [150,171–173]. Several
studies have documented the superiority of niosomes in enhancing
permeation of drugs across the stratum corneum [171,174,175].
Recently, Paolino et al. [176] have shown that Niosomes constructed
from a new non-ionic surfactant alpha,omega-hexadecyl-bis-(1-aza-
18-crown-6) (Bola-surfactant), span 80 and cholesterol show signif-
icantly improved percutaneous permeation of ammonium glycyr-
rhizinate with respect to both the aqueous drug solution and a
physical mixture between unloaded Bola-niosomes and the aqueous
drug solution. Niosomes constructed from cholesterol, span 60 and
dicetylphosphate were effective in increasing skin permeation of
frusemide across mouse skin as compared to conventional formula-
tions [177]. In general niosomes are well suited for delivery of
hydrophobic drugs as compared to hydrophilic drugs.

Ethosomes are relatively new types of vesicle systems, primarily
composed of water, ethanol and phospholipids [160,178,179]. Etho-
somes were reported to be effective at delivering molecules to and
through the skin to the systemic circulation. Elsayed et al. [169]. have
reviewed the use of ethosomes in both in vivo and in vitro studies for
delivery of various drugs across skin including acyclovir, testosterone,
cannabidiol, erythromycin, ammonium glycyrrhizinate, sotalol, sodi-
um salicylate, propanolol, trihexyphenidyl, minoxidil, azelaic acid,
zidovudine and ketotifen. More recently, Rao et al. [180] demonstrat-
ed that the transdermal flux of fenasteride from ethosomal formula-
tions was 2- to 7-fold higher as compared to aqueous formulations.
Dubey et al. [181] showed in their work that transdermal flux of
methotrexate across human cadaver skin can be enhanced from an
optimally designed ethosomal formulation containing 3% phospholi-
pids and 45% ethanol.

Transfersomes are ultradeformable hydrophilic lipid vesicles
that putatively cross the skin under the influence of a transepi-
dermal water activity gradient. Transfersomes consist of phospho-
lipids and an edge activator that increases the deformability of the
bilayers and is often a single chain surfactant such as sodium
cholate, sodium deoxycholate, Span 60, Span 65, Span 80, Tween
20, Tween 60, Tween 80 or dipotassium glycyrrhizinate [182–190].
The effects of different edge activators on transfersome properties
have been extensively investigated in several studies [190–193].
Ultradeformable vesicles have been shown to be successful in
delivering a range of different dugs across the skin including 5-
fluorouracil [194], lidocaine [195], tetracaine [195], cyclosporine
A [196], insulin [197, 198], diclofenac [198], triamcinolone
acetonide [199,200], hydrocortisone [201], dexamethasone [202],
levonorgestrel [202], estradiol [203], low molecular weight
heparin [204], methotrexate [189], dipotassium glycyrrhizinate
[205] and zidovudine [206].

5.2.5. Microemulsions
Microemulsions are clear, stable, isotropic mixtures of oil, water,

and surfactant, frequently in combination with a cosurfactant [207].
These are easy and inexpensive to formulate, have high thermody-
namic stability and improve the solubilization of hydrophilic as
well as hydrophobic drugs. Several excellent reviews include exam-
ples of a large range of microemulsions used in transdermal drug
delivery of a wide variety of drugs [207–211]. The permeation
enhancement offered by a microemulsion depends largely on the
selection of oil, surfactant and co-surfactant as well as their relative
composition and concentration in themixture. The oil phase is usually
represented by acids such as oleic acid or esters such as isopropyl
myristate, isopropyl palmitate, isostearylic isostearate, glycerin
triacetate or terpenes such as limonene or medium chain triglycer-
ides. The surfactant phase is usually represented by naturally occur-
ring lipids such as phosphatidylcholine, dioleylphosphatidyl
ethanolamine and distearoylphosphatidyl choline. Other surfactants
such as Tween 20, Tween 80, Span 20, Azone, plurol isostearique and
plurol oleique have also been used. Commonly used co-surfactants
in microemulsions include long chain alcohols such octanol, decanol
and dodecanol [207]. Each of the individual components of the
microemulsion may be capable of enhancing the transdermal de-
livery of a drug but their presence in combination results in syn-
ergistic enhancement, significantly increasing the transdermal flux
of the drug molecule. Gupta et al. [212] have shown that trans-
dermal flux of 5-Fluorouracil, an antineoplastic drug, increased 2- to
6-fold from a microemulsion of sodium bis(2-ethylhexyl) sulfosuc-
cinate:water:isopropyl myristate as compared to an aqueous solution
of the same drug. Changez et al. [213] studied transdermal flux of
tetracaine hydrochloride from lecithin:n-propanol:isopropyl myris-
tate:water microemulsions. They showed that microemulsions
enhanced mouse skin permeability to tetracaine hydrochloride by
20- to 25-fold depending upon the composition of the microemul-
sion. Microemulsions may work by enhanced disruption of skin-lipid
structure or by improving the stability of the drug in the formulation.
Gallarate et al. [214] studied the stability of ascorbic acid in several
microemulsions. Isopropyl palmitate or cetearyl octanoate were used
as oils, dodecylglucoside and cocoamide propylbetaine were used as
surfactants, and 2-ethyl-1,3-hexanediol was chosen as a cosurfactant.
Stability of ascorbic acid against oxidation was found to be superior
in the microemulsion systems as compared to that in the aqueous
formulations. Zhu et al. [215] showed that skin permeation of
penciclovir from a microemulsion formulation of oleic acid:Cremor-
phor EL:ethanol:water was 3.5-fold higher as compared to a com-
mercial cream.

5.2.6. Inclusion complexes
Inclusion complexes are structured molecular cages that encap-

sulate an active drug molecule in their core. The most extensively
studied agents to form inclusion complexes are cyclodextrins [89–94].
In general, cyclodextrin inclusion complexes are believed to improve
the drug stability by preventing degradation, oxidation or hydrolysis
and improving drug solubility. Many studies have described the action
of cyclic oligosaccharides and in particular beta-cyclodextrins in
increasing skin permeability of hydrophilic drugs. For example,
Masson et al. [95] have shown that cyclodextrins act as permeation
enhancers carrying the drug through from the bulk formulation
towards the lipophilic surface of biological membranes, where the
drug molecules partition from the complex into the lipophilic
membrane. Further, De Paula et al. [96] have shown that increased
absorption of estradiol in the stratum corneum was a result of
increase in drug availability on the skin surface due to inclusion
complexation. Jug et al. [97] have proposed that cyclodextrins form
inclusion complexes of drugs and deliver the drug molecules to the
barrier surface where complex dissociation and drug permeation
across the membrane occurs. For example, beta-cyclodextrin was able
to maintain the stability of tixoxortol 17-butyrate 21-propionate for
30 days at 40 °C [216]. Beyond providing a stabilizing pocket for the
drug, cycoldextrins can work synergistically with permeation
enhancers to improve their absorption across the skin. Adichi et al.
[217] demonstrated that an inclusion complex of prostaglandin E1
(PGE1)with O-carboxymethyl-O-ethyl-beta-cyclodextrin (CME-beta-
CyD) in a fatty alcohol:propylene glycol ointment base supplemented
with a permeation enhancer 1-[2-(decylthio)ethyl]azacyclopentane-
2-one (HPE-101) improved the transdermal flux of PGE1 across
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hairless mouse skin by approximately 100-fold as compared to that of
PGE1 alone and approximately 10 times that of PGE1 with HPE-101.
Cyclodextrin can complex with enhancers like quaternary ammonium
salts and reduce their toxic side effects on skin while still maintaining
their skin permeabilization capacity, thereby showing a synergy
between safety and potency [218]. Several other studies have
reported synergistic behavior between cyclodextrins and convention-
al permeation enhancers [93,219,220].

6. Design of synergistic mixtures

In the last six decades of extensive research in the area of chemical
permeation enhancers, more than 300 chemicals of varying skin
permeabilization potential have been identified. New permeation
enhancers are being continually added to this pool as our under-
standing of the interactions between skin constituents and different
chemicals advances. Several investigators including us have success-
fully related structure of chemical enhancers to their safety and
potency [56,100,101,106]. These efforts have resulted in design of
superior chemical permeation enhancers. However, the field is not yet
mature enough to design synergistic combinations of permeation
enhancers from this knowledge. Existing theories explaining interac-
tions between permeation enhancers and skin constituents are not
always sufficient to explain the interaction between a mixture of
permeation enhancers and skin constituents. Another complexity
arises from the interactions between the individual enhancers of the
combination in the vehicle even before they interact with the skin.
Enhancers distributed in various chemical classes can interact with
each other in a variety of ways resulting in myriad different species
exhibiting polydispersity in concentration, composition and chemical
behavior. In an extensive study of approximately 5000 unique binary
combinations of chemicals, we [81] have shown that random
combinations of chemicals rarely result in highly synergistic behavior.
In fact, less than 1% of the entire candidate pool tested in our study
showed synergistic behavior. Further, desired synergistic behavior
was more likely to occur in a very narrow range of chemical
compositions of the involved components. Since it is difficult to
determine a priori where synergy would be observed in the
composition space of the mixture, it is essential to experimentally
determine the activity of multicomponent formulations over all
possible composition ranges.

6.1. Experimental methods for discovering synergistic combinations

Usually, synergistic mixtures are designed empirically from
individual components that have been shown to enhance flux of a
particular drug across the skin. These components are combined in
different proportions and their effects tested on skin permeation of
the drug. Alternately, chemical mixtures can be designed in a
systematic manner by varying the total concentration as well as
composition of all the individual components. This however, can
result in a large number of potential test formulations. For example,
the number of binary mixtures that can be designed from the current
pool of ∼300 permeation enhancers at 5 different total concentrations
and 10 compositions is well over a million. For ternary mixtures the
number of formulations would be well over a trillion. Several
synergistic mixtures such as vesicles and microemulsions routinely
contain more than 3 components and their rational design would
require testing a huge pool of potential test formulations. Franz
diffusion cells (FDCs) are currently the workhorse of all permeation
experiments in transdermal studies. FDCs utilize permeation of a
model solute that may be a dye or radioisotope, or the actual drug to
evaluate the effect of penetration enhancers on skin permeation.
These experiments are cumbersome, have long hold-up times and
require manual sampling. Although semi-automated versions of FDCs
have been developed to reduce manual effort, their throughput still
remains low (10 experiments a day). As a result FDCs become
impractical when used for screening a large library of O(106)
formulations. To overcome the limitations of FDCs, high throughput
methodologies such as INSIGHT (IN vitro Skin Impedance Guided High
Throughput) were designed to accelerate the discovery of synergistic
combinations of permeation enhancers. The high throughput of
INSIGHT comes from the use of a surrogate measure, skin conductiv-
ity, instead of solute permeation across the skin. Several hitherto
undiscovered combinations of permeation enhancers were identified
in this study that provided high skin permeation enhancement. These
combinations not only demonstrate a synergy in disrupting skin
barrier but also a synergy between safety and potency of permeation
enhancers [81]. In addition to discovering synergistic mixtures of
chemical enhancers, INSIGHT screening has also been used success-
fully in generating qualitative “rules” for combining various chemicals
from different classes to increase the rate of discovery of synergistic
chemical enhancer mixtures [105]. For example, equi-molar or equi-
mass combinations of chemical enhancers are more likely to show
synergistic behavior. Methyl pyrrolidone, a small molecule, shows a
high propensity for forming synergistic combinations that are also
very potent in increasing skin permeability. Zwitterionic surfactants
are more likely to feature in potent combinations whereas cationic
surfactants and fatty esters are more likely to form synergistic
combinations amongst different chemical classes. Simple but
invaluable rules like these will provide guiding principles for
designing focused libraries to further speed up the discovery
process.

6.2. Statistical models for discovering synergistic combinations

Models based on fundamental interactions between chemical
enhancers, and between chemical enhancer mixtures and skin can
expedite the process of designing synergistic mixtures of chemical
enhancers without the need for extensive brute force experimental
efforts. As noted earlier, this is an extremely challenging task given
the diverse nature of chemical enhancers as well as the plurality of
mechanisms by which chemical enhancers interact with the skin
constituents. We and others have started investigations into exploring
why certain chemical enhancer mixtures show synergistic behavior
[58,80,105,221,222]. We have discovered that equimolar mixtures of
chemical enhancers are typically more likely to form synergistic
combinations [105]. We have investigated the mechanism of one such
synergistic combination, NLS:S20 in details. The high synergy of
equimolar formulations of NLS:S20 can be attributed to secondary
micellar-like structures that arise from combining NLS and S20 in
equimolar proportions [80]. It is quite likely that, in general,
equimolar combinations of chemicals are more likely to form
secondary structures and thus are more effective in permeabilizing
the skin.

Detailed investigations into the mechanisms of interactions of
chemical mixtures with skin are laborious and time consuming. Such
investigations become even more challenging when the number of
components in themixture exceeds two. Oneway to simplify complex
multicomponent interactions in chemical mixtures is to view them as
additive interactions between all possible binary pairs in the mixture.
Such a statistical approach to complex systems has been used
successfully in the past [223–225]. While such a representation may
not be adequate in providing fundamental insights into the synergistic
mechanisms of chemical enhancer mixtures, it provides a basis for
predicting interesting mixtures (ternary and higher) of chemical
enhancers that can be studied in further details experimentally. High
throughput screening tools such as INSIGHT can be used to generate
data on a large pool of binary mixtures. These data can then be used in
conjunction with simple statistical models to develop algorithms that
predict the efficacy of higher order mixtures, thereby significantly
reducing the ‘wet’ effort in discovery. The skin permeabilization
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efficacy, for example, of a ternarymixture of three individual chemical
enhancers A, B and C can be proposed as follows:

EABC¼ γAEAþγBEBþγCECþγABEABþγBCEBCþγCAECA

Where EABC represents efficacy of a ternary mixture of A, B and C; EAB,
EBC and ECA represent efficacies of binarymixtures of A, B and C; EA, EB,
EC represent efficacies of individual components. γ represents a
pseudo activity coefficient for a single component or a pseudo
interaction coefficient for combinations. One way to determine these
activity or interaction coefficients is by using rigorous thermodynamic
treatments. For predictive purposes in equations such as those
represented above, γ may be determined by pure statistical
approaches by mining large data sets, such as those collected by
INSIGHT. Whether or not such models are successful in predicting
experimental data remains to be seen.

7. Conclusions

Synergistic systems employing chemical mixtures offer a way to
overcome some of the limitations of individual chemicals in
enhancing transdermal drug delivery. Combinations of chemicals
can be used to not only improve the potency of permeation enhancers
but also their safety. In the past, design of synergistic systems was
limited by the low throughput of experimental screening methods.
With the availability of high throughput screening platforms and
rational design strategies based on improved understanding of the
interactions between skin constituents and chemicals, the design of
novel synergistic systems should be accelerated in the future. Further,
synergistic chemical systems are no longer limited to simple empirical
mixtures of traditional permeation enhancers but they can be
designed to include more complex systems such as vesicles,
microemulsions and inclusion complexes.
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