Skin permeation profile and anti-inflammatory effect of anemonin extracted from weilingxian

Yuming Ning1,2, Yuefeng Rao3, Zhenwei Yu4, Wenquan Liang5, Fanzhu Li1

Received August 17, 2015, accepted October 10, 2015
Dr. Fanzhu Li, College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, 310053 Hangzhou, China. proflunchu@163.com

The aim of this study was to evaluate the skin permeability of anemonin, which was extracted from the Chinese herb weilingxian, and its potency of relieving the inflammation caused by rheumatoid arthritis (RA).

1. Introduction

Rheumatoid arthritis (RA) is a long-term and chronic inflammatory autoimmune disease occurring frequently in older individuals, which is characterized by symmetric polyarticular inflammation and gradual joint destruction (Firestein 2003). Although they have not been shown to slow the progress of RA, oral NSAIDs remain the most commonly prescribed medication for the relief of RA-related pain and inflammation (Kodlofs et al. 2008). Since oral NSAIDs pose a risk of adverse effects such as renal, hepatic, cardiac, and gastrointestinal toxicity, topical NSAIDs were developed (Doktor et al. 2013). Topical administration can provide a locally enhanced drug delivery for the superficial joint tissues by direct diffusion, however, few percutaneous NSAIDs have been demonstrated to show efficacy against joint inflammation in patients with RA (Xu et al. 2013; Kawai et al. 2010), the need for an efficient and safe alternative medication is substantial.

Herbal medicines have long been used to treat inflammatory diseases of the joints in Asian countries such as China, Korea, and Japan. Many Clematis species, for example, Clematis mandshurica Ruprecht (Hartog et al. 2008), Clematis chinesis Osbeck (Wu et al. 2010) and Clematis vitalba (Yesilada and Kopeli 2007) etc., were identified as having the potency to treat inflammation. Accumulative evidence has demonstrated that some Clematis species have chondroprotective effects in vitro and in vivo (Lee et al. 2007). The traditional Chinese herb weilingxian (WLX) (dried roots and rhizomes of Clematis chinensis Osbeck, Clematis hexapetala Pall., and Clematis mandshurica Rupr.), with the functions of expelling wind-damp and activating meridians to stop pain, has long been used to treat rheumatic arthritis, limbs numbness, tendons spasm, discomfort of flexion and extension (State Pharmacopoeia Committee of People’s Republic of China 2010; Xiong et al. 2014).

It is well known that triterpenoid saponins are main anti-inflammatory active components of WLX (Xiong et al. 2014). More and more evidence has shown that anemonin, another major chemical constituent of WLX, also exhibits powerful anti-inflammatory activity. Anemonin, a dimer of protoanemonin (Fig. 1), can significantly reduce inflammatory response by inhibiting secretion of nitric oxide, endothelin-1, soluble intercellular adhesion molecule-1, interleukin-6, and thromboxane B2 in lipopolysaccharid-induced rat intestinal microvascular endothelial and RAW 264.7 cells (Hu et al. 2009ab; Lee et al. 2008). Recently, it has been reported that anemonin appeared to possess the antiapoptosis ability and to protect mouse brain from ischemia and reperfusion damage (Jia et al. 2014).

As in some cases RA is restricted to only one or a few larger joints, percutaneous drug delivery provides an opportunity for drug localization at the target site. Meanwhile, the physico-chemical properties of anemonin (from Pubchem), molecular weight 192.16, melting point 157–158 °C, LogP 0.4, slightly soluble in cold water, soluble in hot ethanol and chloroform, the physical-chemical property of anemonin indicates it probably is a potential candidate for percutaneous application (Magnusson et al. 2004; Guy 2010).

To optimize the formulation, the solubility of anemonin in water and selected concentration of ethanol-water vehicles was determined. The effect of ethanol on the permeation of anemonin through human skin was then studied. Additionally, the influences of hydroxypropyl methylcellulose E50 (HPMC) and Carbomer 934 in different concentrations on the permeation of drug were investigated. Finally, the anti-inflammatory effect of the optimized formulation was assessed by murine model of xylene-induced ear edema. The results showed that the solubility and transdermal permeation of anemonin in ethanol-water vehicles linearly depended on the ethanol concentration. The combination of 30% ethanol and 3% Azone had a synergistic enhancement effect and was therefore selected for gel preparation. The 0.14% anemonin gel prepared showed that the solubility and transdermal permeation of anemonin in ethanol-water vehicles linearly depended on the ethanol concentration. The combination of 30% ethanol and 3% Azone had a synergistic enhancement effect and was therefore selected for gel preparation. The 0.14% anemonin gel prepared with 1% HPMC exhibited the highest transdermal flux. The xylene-induced ear edema inhibitory rate of the optimized formulation was 48.85%. The results indicated that transdermal administration of anemonin is a potential modality for combating inflammation caused by RA.
Fig. 1: Chemical structures of anemonin and protoanemonin.

Fig. 2: Chemical structures of anemonin and protoanemonin.

Fig. 3: A) In vitro permeation profiles versus time and B) transdermal fluxes of anemonin from solvents S0 to S6 through human skin (mean ± SD, n = 3). *P < 0.05 statistical difference compared with S0. **P < 0.01. ***P < 0.001. S0: aqueous solution, S1: 30% ethanol, S2: 50% ethanol, S3: 5% oleic acid (OA) + 4% tween20 (TW), S4: 30% ethanol + 5% OA + 4% TW, S5: 3% Azone + 4% TW, S6: 30% ethanol + 3% Azone + 4% TW.

Fig. 4: Solubility of anemonin in different solvents. 25: aqueous solution at 25 °C; 37: aqueous solution at 37 °C; PEG: 20% PEG 400 in isotonic saline; E30: ethanol 30%; E45: ethanol 45%; E60: ethanol 60%. Values expressed as mean ± SD (n = 3). *statistical difference compared with distilled water at 37 °C, **P < 0.01, ***P < 0.001.

For percutaneous delivery into deeper tissues for the treatment of RA, therapeutic agents must primarily pass through the outermost skin layer, stratum corneum (SC), epidermis, then dermis and subcutaneous fat. SC is only ∼10–20 μm thick across most parts of the human body, but provides a powerful barrier to the passive permeation of drugs (Prausnitz et al. 2004), therefore, the challenge remains to overcome the resistance of SC. The present study was designed to assess the permeability of anemonin through human skin and explore the potential for the treatment of inflammation. First, the solubility and permeability of anemonin in several solvents were determined. Subsequently, the effects of hydroxypropyl methylcellulose E50 (HPMC) and Carbomer 934 (CBR) on the permeation of anemonin were studied. At last, the formulation with the best performance was evaluated in situ in mice.

2. Investigations and results

2.1. Solubility

Figure 2 shows the results of solubility tests. The solubility of anemonin in water at 25 °C and 37 °C was 0.982 ± 0.07 and 1.38 ± 0.04 mg/mL, respectively. The values at 37 °C in 30 %, 45 %, 60 % (v/v) ethanol and isotonic saline containing 20 % (v/v) polyethylene glycol 400 (PEG 400) were 3.92 ± 0.08, 6.78 ± 0.08, 8.36 ± 0.11 and 1.83 ± 0.06 mg/mL, respectively.

2.2. In vitro skin permeation experiments

2.2.1. Effect of ethanol water co-solvent on the permeation of anemonin

The results are shown in Fig. 3. The steady state flux value (J_{ss}, μg/cm²/h) was: 1.17 ± 0.27 for S0, 9.36 ± 0.50 for S1, 18.56 ± 0.78 for S2, 1.08 ± 0.17 for S3, 4.87 ± 0.83 for S4, 7.30 ± 0.29 for S5 and 13.77 ± 0.20 for S6. 3% Azone (S5) significantly ($P<0.05$) increased the transdermal flux of anemonin compared to aqueous solution (S0) and the combination of 3% Azone (AZO) and 30% ethanol (S6) had a synergistic effect. 5% oleic acid (S1) achieved no increase in anemonin permeation, even when 5% oleic acid (OA) was combined with 30% ethanol (S4) the transdermal flux significantly ($P<0.05$) decreased with respect to 30% ethanol used alone (S4).

2.2.2. Effect of gel polymer on the permeation of anemonin

As shown in Fig. 4 and Table 1, 1% HPMC (F4) demonstrated the best performance in penetration of anemonin, therefore it was selected as the base gel for the further investigations in which the effect of AZO was evaluated. Both 3% (F7) and 5% AZO (F8) significantly ($P<0.05$) enhanced the penetration of anemonin.
compared to F4, but there was no statistical difference between them, so F7 was used for the following anti-inflammatory study.

1.3 Effect of anemonin on xylene-induced ear edema in mice

As shown in Fig. 5, F7 (group C) and diclofenac gel (group D) significantly ($P<0.001$) reduced the edema with the inhibitory rate of 48.85 % and 55.42 % compared to the group treated with the saline (group A), respectively. The weight difference (mg) between the left and right ear was 13.43 ± 2.37 for group A, 6.87 ± 1.30 for group C and 5.99 ± 1.11 for group D, respectively. The mice of group B only were applied with F7 but no ear edema was induced by xylene, the weight difference of the left and right ear was 0.47 ± 0.17, what indicated that F7 almost did not cause irritation to mouse ear.

3. Discussion

The present study was performed to explore the possibility of percutaneous delivery of anemonin from a gel formulation to resist topical inflammation associated with RA. The understanding of the effects of solvents on percutaneous drug absorption is important for transdermal preparations such as gel that is composed of volatile solvents which evaporate upon application on the skin (Intarakumhaeng and Li 2014). Ethanol is a solvent commonly used in transdermal formulations to increase the solubility of the drug in the vehicle. Ethanol can alter the SC barrier and the solubility properties of the tissue with a consequent improvement for drug partitioning into the membrane, and increase the thermodynamic activity of the solute when the solvent dissipates by skin absorption and evaporation (Lane 2013; Williams and Barry 2012). Anemonin is slightly soluble in water, therefore it is necessary to dissolve anemonin in a co-solvent in order to acquire appropriate solubility in formulations and finally enhance its permeation. As shown in Fig. 2, the solubility of anemonin in ethanol water co-solvent was significantly higher ($P<0.05$) than in water and increased with the increasing concentration of ethanol. As expected, the permeation of anemonin also increased with the increasing content of ethanol (Fig. 3). Considering the higher levels ethanol probably accompany a proportional increase in skin irritation, 30% ethanol-water (30:70, v/v) was selected as co-solvent in the present study. The gels have been proven to be a beneficial vehicle for topical drug delivery or for the localized drug action on skin such as in case of arthritis, osteoarthritis and degenerative joint disease (Sareen et al. 2011). RA is a symmetric polyarticular arthritis that primarily affects the small diarthrodial joints of the hands and feet (Firestein 2003), gel is more convenient to use and causes less obstacles to the joint activities in comparison with patches. HPMC and CBR are non-toxic and are approved for use in the field of medicine by FDA in drug delivery system. Although the genus Clematis has long been used to treat inflammatory diseases of the joints, fresh Clematis is hardly employed. The reason is that the entire genus Clematis contains protoanemonin which is extremely irritating to the
The animals were maintained in collective cages at 22 °C. Use Committee of Zhejiang University, China. Zhejiang University and has been approved by by Experimental Animal Human abdominal skin was supplied by the Anatomy Department of

Corporation (Shanghai, China). HPMC was purchased from Colorcon Coat-

99%) was obtained from the National Institute for the Control of Pharmaceu-

ical or high performance liquid chromatography (HPLC) gradient grade.

Anemonin (extracted from WLX by our laboratory, purity ≥95%). The antimicrobial activity of solvents as follows: 30% ethanol (v/v, S1), 50% ethanol (v/v, S2), 5% OA + 4% Tween 20 (TW) (v/v, S3), 30% ethanol +5% OA +4% TW (v/v, S4), 3% AZO + 4% TW (v/v, S5), 30% ethanol + 3% AZO + 4% TW (v/v, S6), then distilled water was added to adjust to the total volume as prescribed and stirred overnight. Anemonin aqueous solution (S0) was used as the control solution. The concentration of anemonin in all solutions was 1.4 mg/mL. The addition of TW served as a wetting agent in the test solution of water to reduce the surface tension of water, increasing the solubility of AZO and OA in water.

4. Preparation of gel formulations

To evaluate the influence of gel polymer on the anemonin permeation, HPMC and CBR were selected to be used in test formulations. Briefly, the appropriate HPMC/CBR was slowly dispersed in distilled water. Drug was dissolved in ethanol and added dropwise into the gel to be completely mixed. Optionally a chemical enhancer was added into the gel as prescribed and the anemonin concentration in all formulations was 0.14% (w/w). The CBR gel was neutralized with triethanolamine as prescribed. Table 2 reports the exact composition of the gels.

4.6. In vitro skin permeation studies

As described previously (Rao et al. 2013; Yu et al. 2013), the frozen human cadaver skin without adhering subcutaneous fatty tissue was thawed at ambient temperature, and then washed gently three times with saline prior to use. The skin was mounted onto the modified Franz diffusion cells (TK-

2 cm², and the receptor volume was 6.8 mL. The diffusion cell was filled with isotonic saline for transport kinetic balance of skin. After a one hour equilibration period, the isotonic saline was abandoned and the receptor cell was refilled with degassed isotonic saline containing 20% PEG 400 as solubilizer and 1 g formulation was applied on each donor chamber of Franz cells. The receptor compartment was sampled at predetermined time intervals, 1 mL was collected and replaced by fresh receptor medium. The receptor cell was maintained at 37 ± 0.5 °C and stirred at a constant rate of 300 rpm by a Teflon-coated magnetic bar to keep them well mixed. Flux measurements were carried out by HPLC after appropriate dilution with the mobile phase.

4.7. Anti-inflammatory effect assessment

The experiment was carried out as described previously (Wu et al. 2006; Patel et al. 2009) with some modifications. Briefly, the mice were divided into four groups, each comprising 10 animals. Group A received 0.03 mL normal saline and served as vehicle control, group B and C were treated with 0.03 mL 5% on the anterior and posterior surfaces of the right ear daily, respectively, and group D received 0.03 mL diclofenac gel (the composition similar to F7 besides anemonin replaced by diclofenac sodium) as a positive control. Thirty minutes after administration of drug, the gels remaining on the skin surface of group C and D were removed by gentle washing with saline. Subsequently, apart from the group B, all the mice in other groups were applied with 0.03 mL xylene on the anterior and posterior surfaces of the right ear daily. After 24 h of edema induction, the mice were sacrificed.

Table 2: Compositions of gel formulations (% w/w)

<table>
<thead>
<tr>
<th>Material</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemonin</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbomer 934</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPMC</td>
<td>–</td>
<td>–</td>
<td>1.00</td>
<td>3.00</td>
<td>5.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>1.35</td>
<td>4.05</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azote</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tween 20</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Distilled water</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

4.1. Materials

Anemonin (extracted from WLX by our laboratory, purity ≥ 95%). The anemonin reference substance (lot numbers: 11176-2000S, purity ≥ 99%) was obtained from the National Institute for the Control of Pharmacetical and Biological Products (Beijing, China). Diclofenac sodium (purity ≥ 99%) used as a positive control was purchased from Aladdin Industrial Corporation (Shanghai, China). HPMC was purchased from Colorcon Coating Technology Co. Ltd (Shanghai, China). CBR was manufactured by BF Goodrich Company (USA). Other materials used in this study were purchased from Hangzhou Medicinal Co. Ltd (Hangzhou, China) and were of anal-
ytical or high performance liquid chromatography (HPLC) gradient grade.

4.2. Human skin and animals

Human abdominal skin was supplied by the Anatomy Department of Zhejiang University and has been approved by by Experimental Animal Use Committee of Zhejiang University. China. Male Kunming mice, 5-6 weeks old, weighing 25-30 g were obtained from the Experimental Animal Center of Zhejiang University (Hangzhou, China). The animals were maintained in collective cages at 22 ± 2 °C and relative humidity between 40% and 70% under a 12 h light/dark cycle. The animals had free access to food and water. Animal care and experiments were conducted in accordance with the Guidelines of Zhejiang University Animal Care Committee.

4.3. Solubility measurement

An excess of anemonin reference substance was placed in contact with 1 mL of solvent in a sealed glass tube. The tube was maintained in a constant tem-

Pharmazie 71 (2016)
4.8. RP-HPLC analysis
A rapid and sensitive RP-HPLC method was developed to simultaneously measure anemonin concentrations in the receptor medium. Samples were measured by an Agilent 1100 series automated HPLC system. The instrument was fitted with an Eclipse XDB-C18 column (150 × 4.6 mm, 5 µm, Agilent). Detection wavelength was set at 220 nm. The injection volume was 20 µL. An isocratic elution program was used with the mobile phase of acetonitrile:phosphate buffer (75:25, v/v, pH = 3.0 with H3PO4) and a flow rate of 1 mL/min. The amount of drug permeated per square centimeter of skin was calculated from the standard curve. The retention time for anemonin was approximately 6.5 min. The method provided good precision and linearity in the required concentration range (0.1-4.5 µg/mL, R² = 0.999).

Cumulative amount (µg/cm²) of anemonin collected in the receiver was plotted as a function of time. The flux value (J, µg/cm².min) for each experiment was obtained from the slope of the linear portion of the data fitted by regression analysis. Penetration-enhancing activities were expressed as enhancement ratios (ER), i.e., the ratio of the flux value with enhancer to that obtained without enhancer (Jantharaprapap and Stagni 2007).

4.9. Statistical analysis
All skin permeability experiments were repeated at least three times and values of the measured index were expressed as the mean ± standard deviation (SD). Mean, SD, scatterplots, histograms and linear regression analyses were calculated using Microsoft Excel 2010. Analysis of variance (ANOVA), Tukey post hoc test, and Student t-test were performed with SPSS 20.0 for Windows (v. 20.0; SPSS, Inc., Chicago, IL, USA). A value of P < 0.05 was considered as the statistical difference.

References